改动一行代码,PyTorch训练三倍提速,这些「高级技术」是关键
一分耕耘,一分收获!既然都打开这篇《改动一行代码,PyTorch训练三倍提速,这些「高级技术」是关键》,就坚持看下去,学下去吧!本文主要会给大家讲到等等知识点,如果大家对本文有好的建议或者看到有不足之处,非常欢迎大家积极提出!在后续文章我会继续更新科技周边相关的内容,希望对大家都有所帮助!
近日,深度学习领域知名研究者、Lightning AI 的首席人工智能教育者 Sebastian Raschka 在 CVPR 2023 上发表了主题演讲「Scaling PyTorch Model Training With Minimal Code Changes」。
为了能与更多人分享研究成果,Sebastian Raschka 将演讲整理成一篇文章。文章探讨了如何在最小代码更改的情况下扩展 PyTorch 模型训练,并表明重点是利用混合精度(mixed-precision)方法和多 GPU 训练模式,而不是低级机器优化。
文章使用视觉 Transformer(ViT)作为基础模型,ViT 模型在一个基本数据集上从头开始,经过约 60 分钟的训练,在测试集上取得了 62% 的准确率。
GitHub 地址:https://github.com/rasbt/cvpr2023
以下是文章原文:
构建基准
在接下来的部分中,Sebastian 将探讨如何在不进行大量代码重构的情况下改善训练时间和准确率。
想要注意的是,模型和数据集的详细信息并不是这里的主要关注点(它们只是为了尽可能简单,以便读者可以在自己的机器上复现,而不需要下载和安装太多的依赖)。所有在这里分享的示例都可以在 GitHub 找到,读者可以探索和重用完整的代码。
脚本 00_pytorch-vit-random-init.py 的输出。
不要从头开始训练
现如今,从头开始训练文本或图像的深度学习模型通常是低效的。我们通常会利用预训练模型,并对模型进行微调,以节省时间和计算资源,同时获得更好的建模效果。
如果考虑上面使用的相同 ViT 架构,在另一个数据集(ImageNet)上进行预训练,并对其进行微调,就可以在更短的时间内实现更好的预测性能:20 分钟(3 个训练 epoch)内达到 95% 的测试准确率。
00_pytorch-vit-random-init.py 和 01_pytorch-vit.py 的对比。
提升计算性能
我们可以看到,相对于从零开始训练,微调可以大大提升模型性能。下面的柱状图总结了这一点。
00_pytorch-vit-random-init.py 和 01_pytorch-vit.py 的对比柱状图。
当然,模型效果可能因数据集或任务的不同而有所差异。但对于许多文本和图像任务来说,从一个在通用公共数据集上预训练的模型开始是值得的。
接下来的部分将探索各种技巧,以加快训练时间,同时又不牺牲预测准确性。
开源库 Fabric
在 PyTorch 中以最小代码更改来高效扩展训练的一种方法是使用开源 Fabric 库,它可以看作是 PyTorch 的一个轻量级包装库 / 接口。通过 pip 安装。
pip install lightning
下面探索的所有技术也可以在纯 PyTorch 中实现。Fabric 的目标是使这一过程更加便利。
在探索「加速代码的高级技术」之前,先介绍一下将 Fabric 集成到 PyTorch 代码中需要进行的小改动。一旦完成这些改动,只需要改变一行代码,就可以轻松地使用高级 PyTorch 功能。
PyTorch 代码和修改后使用 Fabric 的代码之间的区别是微小的,只涉及到一些细微的修改,如下面的代码所示:
普通 PyTorch 代码(左)和使用 Fabric 的 PyTorch 代码
总结一下上图,就可以得到普通的 PyTorch 代码转换为 PyTorch+Fabric 的三个步骤:
- 导入 Fabric 并实例化一个 Fabric 对象。
- 使用 Fabric 设置模型、优化器和 data loader。
- 损失函数使用 fabric.backward (),而不是 loss.backward ()。
这些微小的改动提供了一种利用 PyTorch 高级特性的途径,而无需对现有代码进行进一步重构。
深入探讨下面的「高级特性」之前,要确保模型的训练运行时间、预测性能与之前相同。
01_pytorch-vit.py 和 03_fabric-vit.py 的比较结果。
正如前面柱状图中所看到的,训练运行时间、准确率与之前完全相同,正如预期的那样。其中,任何波动都可以归因于随机性。
在前面的部分中,我们使用 Fabric 修改了 PyTorch 代码。为什么要费这么大的劲呢?接下来将尝试高级技术,比如混合精度和分布式训练,只需更改一行代码,把下面的代码
fabric = Fabric(accelerator="cuda")
改为
fabric = Fabric(accelerator="cuda", precisinotallow="bf16-mixed")
04_fabric-vit-mixed-precision.py 脚本的比较结果。脚本地址:https://github.com/rasbt/cvpr2023/blob/main/04_fabric-vit-mixed-precision.py
通过混合精度训练,我们将训练时间从 18 分钟左右缩短到 6 分钟,同时保持相同的预测性能。这种训练时间的缩短只需在实例化 Fabric 对象时添加参数「precisinotallow="bf16-mixed"」即可实现。
理解混合精度机制
混合精度训练实质上使用了 16 位和 32 位精度,以确保不会损失准确性。16 位表示中的计算梯度比 32 位格式快得多,并且还节省了大量内存。这种策略在内存或计算受限的情况下非常有益。
之所以称为「混合」而不是「低」精度训练,是因为不是将所有参数和操作转换为 16 位浮点数。相反,在训练过程中 32 位和 16 位操作之间切换,因此称为「混合」精度。
如下图所示,混合精度训练涉及步骤如下:
- 将权重转换为较低精度(FP16)以加快计算速度;
- 计算梯度;
- 将梯度转换回较高精度(FP32)以保持数值稳定性;
- 使用缩放后的梯度更新原始权重。
这种方法在保持神经网络准确性和稳定性的同时,实现了高效的训练。
更详细的步骤如下:
- 将权重转换为 FP16:在这一步中,神经网络的权重(或参数)初始时用 FP32 格式表示,将其转换为较低精度的 FP16 格式。这样可以减少内存占用,并且由于 FP16 操作所需的内存较少,可以更快地被硬件处理。
- 计算梯度:使用较低精度的 FP16 权重进行神经网络的前向传播和反向传播。这一步计算损失函数相对于网络权重的梯度(偏导数),这些梯度用于在优化过程中更新权重。
- 将梯度转换回 FP32:在计算得到 FP16 格式的梯度后,将其转换回较高精度的 FP32 格式。这种转换对于保持数值稳定性非常重要,避免使用较低精度算术时可能出现的梯度消失或梯度爆炸等问题。
- 乘学习率并更新权重:以 FP32 格式表示的梯度乘以学习率将用于更新权重(标量值,用于确定优化过程中的步长)。
步骤 4 中的乘积用于更新原始的 FP32 神经网络权重。学习率有助于控制优化过程的收敛性,对于实现良好的性能非常重要。
Brain Float 16
前面谈到了「float 16-bit」精度训练。需要注意的是,在之前的代码中,指定了 precisinotallow="bf16-mixed",而不是 precisinotallow="16-mixed"。这两个都是有效的选项。
在这里,"bf16-mixed" 中的「bf16」表示 Brain Floating Point(bfloat16)。谷歌开发了这种格式,用于机器学习和深度学习应用,尤其是在张量处理单元(TPU)中。Bfloat16 相比传统的 float16 格式扩展了动态范围,但牺牲了一定的精度。
扩展的动态范围使得 bfloat16 能够表示非常大和非常小的数字,使其更适用于深度学习应用中可能遇到的数值范围。然而,较低的精度可能会影响某些计算的准确性,或在某些情况下导致舍入误差。但在大多数深度学习应用中,这种降低的精度对建模性能的影响很小。
虽然 bfloat16 最初是为 TPU 开发的,但从 NVIDIA Ampere 架构的 A100 Tensor Core GPU 开始,已经有几种 NVIDIA GPU 开始支持 bfloat16。
我们可以使用下面的代码检查 GPU 是否支持 bfloat16:
>>> torch.cuda.is_bf16_supported()True
如果你的 GPU 不支持 bfloat16,可以将 precisinotallow="bf16-mixed" 更改为 precisinotallow="16-mixed"。
多 GPU 训练和完全分片数据并行
接下来要尝试修改多 GPU 训练。如果我们有多个 GPU 可供使用,这会带来好处,因为它可以让我们的模型训练速度更快。
这里介绍一种更先进的技术 — 完全分片数据并行(Fully Sharded Data Parallelism (FSDP)),它同时利用了数据并行性和张量并行性。
在 Fabric 中,我们可以通过下面的方式利用 FSDP 添加设备数量和多 GPU 训练策略:
fabric = Fabric(accelerator="cuda", precisinotallow="bf16-mixed",devices=4, strategy="FSDP"# new!)
06_fabric-vit-mixed-fsdp.py 脚本的输出。
现在使用 4 个 GPU,我们的代码运行时间大约为 2 分钟,是之前仅使用混合精度训练时的近 3 倍。
理解数据并行和张量并行
在数据并行中,小批量数据被分割,并且每个 GPU 上都有模型的副本。这个过程通过多个 GPU 的并行工作来加速模型的训练速度。
如下简要概述了数据并行的工作原理:
- 同一个模型被复制到所有的 GPU 上。
- 每个 GPU 分别接收不同的输入数据子集(不同的小批量数据)。
- 所有的 GPU 独立地对模型进行前向传播和反向传播,计算各自的局部梯度。
- 收集并对所有 GPU 的梯度求平均值。
- 平均梯度被用于更新模型的参数。
每个 GPU 都在并行地处理不同的数据子集,通过梯度的平均化和参数的更新,整个模型的训练过程得以加速。
这种方法的主要优势是速度。由于每个 GPU 同时处理不同的小批量数据,模型可以在更短的时间内处理更多的数据。这可以显著减少训练模型所需的时间,特别是在处理大型数据集时。
然而,数据并行也有一些限制。最重要的是,每个 GPU 必须具有完整的模型和参数副本。这限制了可以训练的模型大小,因为模型必须适应单个 GPU 的内存。这对于现代的 ViTs 或 LLMs 来说这是不可行的。
与数据并行不同,张量并行将模型本身划分到多个 GPU 上。并且在数据并行中,每个 GPU 都需要适 应整个模型,这在训练较大的模型时可能成为一个限制。而张量并行允许训练那些对单个 GPU 而言可能过大的模型,通过将模型分解并分布到多个设备上进行训练。
张量并行是如何工作的呢?想象一下矩阵乘法,有两种方式可以进行分布计算 —— 按行或按列。为了简单起见,考虑按列进行分布计算。例如,我们可以将一个大型矩阵乘法操作分解为多个独立的计算,每个计算可以在不同的 GPU 上进行,如下图所示。然后将结果连接起来以获取结果,这有效地分摊了计算负载。
今天关于《改动一行代码,PyTorch训练三倍提速,这些「高级技术」是关键》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

- 上一篇
- 最新研究表明:机器人在破解“反机器人”验证码方面比人类更快、更准

- 下一篇
- 加码自驾市场,一嗨租车与广汽传祺签约
-
- 科技周边 · 人工智能 | 39分钟前 |
- “宠客”行动启动!阿维塔志愿者免费接送游客到荣昌
- 100浏览 收藏
-
- 科技周边 · 人工智能 | 9小时前 |
- SQLServer2017AlwaysOnonLinux配置维护攻略
- 207浏览 收藏
-
- 科技周边 · 人工智能 | 11小时前 |
- 五大新能源车AEB测试,智界R7eAES功能突出
- 204浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 22次使用
-
- MeowTalk喵说
- MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
- 21次使用
-
- Traini
- SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
- 22次使用
-
- 可图AI 2.0图片生成
- 可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
- 25次使用
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 38次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览