当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > Meta用头显+控制器+AI算法,改善全身动捕追踪解决方案

Meta用头显+控制器+AI算法,改善全身动捕追踪解决方案

来源:搜狐 2023-07-30 11:40:59 0浏览 收藏

哈喽!今天心血来潮给大家带来了《Meta用头显+控制器+AI算法,改善全身动捕追踪解决方案》,想必大家应该对科技周边都不陌生吧,那么阅读本文就都不会很困难,以下内容主要涉及到,若是你正在学习科技周边,千万别错过这篇文章~希望能帮助到你!

(映维网Nweon 2023年07月03日)尽管内向外追踪的性能已经足以在头显、控制器和双手追踪方面取代外向内追踪,但由于视场覆盖问题,全身动捕一直以来都是依靠外向内的追踪设置来实现。不仅只是这样,随着头显形状参数的不断小型化轻薄化,摄像头的视场覆盖问题将会变得越发困难。

不过,社区依然在积极探索利用AI等手段来提供下半身的姿态估计。实际上,如果你有留意映维网的专享,诸如Meta,卡内基·梅隆大学,苏黎世联邦理工学院等已经发布了各种论文研究。

现在,韩国首尔大学和Meta的研究人员日前又发布了一项相关研究。利用头显+控制器的组合,以及算法技巧,团队提供了一种名为QuestEnvSim的解决方案。

Meta用头显+控制器+AI算法,改善全身动捕追踪解决方案

为了实现真正的临场感,用户的Avatar必须准确地复刻肢体动作和肢体语言,并实现与环境的自然交互。基于标记的追踪方案繁琐和昂贵。

首尔大学和Meta团队的目标是创建一个只依赖于消费者VR设备的姿态和环境信息作为输入的追踪方案,例如头显+控制器。

从稀疏传感器合成全身运动具有挑战性,因为诸多不同的姿态都可能符合给定的传感器输入,从而造成不准确的估计,尤其是下半身。另外,生成合理的对象交互运动需要特别注意。例如,当用户与他们的环境交互时(坐在沙发上或靠在桌子),这引入了复杂的物理约束。而且下半身并不总是完全受到平衡的约束,所以存在更多的模糊性。例如,当坐在沙发时,诸多不同的姿态都可能符合给定的传感器输入,所以造成不准确的估计。

在名为《QuestEnvSim: Environment-Aware Simulated Motion Tracking from Sparse Sensors》的论文中,团队开发了一种将头显和控制器姿态以及环境的表示作为输入,并生成与传感器输入及其周围环境相匹配的全身运动的运动追踪算法。

具体地说,团队使用物理模拟的Avatar,并通过深度强化学习学习控制策略来产生扭矩以驱动Avatar,目标是尽可能接近地追踪用户的头显和控制器姿态。

当然,社区已经提出了多种类似于所述方法的基于物理Avatar的运动追踪系统。但研究人员认为,对于特定方法,除了脚-地板接触之外,它们尚未证明其他环境交互。至于其他方法,它们采用人工力来处理复杂的接触动力学,而这会产生不自然的运动。

首尔大学和Meta不是使用人工力量,他们的控制策略训练成积极地使用环境来产生适当的外部力量来驱动模拟Avatar,而其中的策略是从包括环境交互的动捕数据中学习。所以,系统产生的动作在物理上是准确的,在环境中更可信。例如,如果头戴式显示器靠近椅子,这可能意味着用户已经坐了下来,而不是仅仅处于蹲伏的状态。

研究人员首先证明了稀疏上半身输入。如果与物理模拟和环境观察相结合,其可以在高度受限的环境中产生真实的全身运动,无需使用任何人工力。

为了展示系统的能力,研究人员展示了各种各样的例子,比如坐在椅子、沙发和盒子、踏过盒子、摇椅子和转动办公椅等等。其中,所有的动作都是由真实用户输入产生,不使用任何后处理,例如逆运动学、接触解析和平滑等。

当然,如果你留意上面的视频,你依然会发现由于摄像头视场覆盖问题,以及诸多不同的姿态都可能符合给定的传感器输入,所以QuestEnvSim依然无法准确估计微妙的下半身姿态,尤其是视频后半段,你会多次发现下半身的姿态估计不完全准确,

相关论文:QuestEnvSim: Environment-Aware Simulated Motion Tracking from Sparse Sensors

不过,研究人员相信这是稀疏传感器与场景交互的运动追踪所取得的最高质量结果之一。接下来,团队将继续努力,并不断优化解决方案。

本篇关于《Meta用头显+控制器+AI算法,改善全身动捕追踪解决方案》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于科技周边的相关知识,请关注golang学习网公众号!

版本声明
本文转载于:搜狐 如有侵犯,请联系study_golang@163.com删除
美团无人机第四代新机型亮相,让消费者享受更优质的配送服务体验美团无人机第四代新机型亮相,让消费者享受更优质的配送服务体验
上一篇
美团无人机第四代新机型亮相,让消费者享受更优质的配送服务体验
windows7电脑太卡解决方案
下一篇
windows7电脑太卡解决方案
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 毕业宝AIGC检测:AI生成内容检测工具,助力学术诚信
    毕业宝AIGC检测
    毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
    23次使用
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    33次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    30次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    34次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    36次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码