当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > Transformer六周年:当年连NeurIPS Oral都没拿到,8位作者已创办数家AI独角兽

Transformer六周年:当年连NeurIPS Oral都没拿到,8位作者已创办数家AI独角兽

来源:51CTO.COM 2023-07-05 11:30:20 0浏览 收藏

一分耕耘,一分收获!既然打开了这篇文章《Transformer六周年:当年连NeurIPS Oral都没拿到,8位作者已创办数家AI独角兽》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!

Transformer六周年:当年连NeurIPS Oral都没拿到,8位作者已创办数家AI独角兽

从 ChatGPT 到 AI 画图技术,人工智能领域最近的这波突破或许都要感谢一下 Transformer。

今天是著名的 transformer 论文提交六周年的日子。

Transformer六周年:当年连NeurIPS Oral都没拿到,8位作者已创办数家AI独角兽

论文链接:https://arxiv.org/abs/1706.03762

六年前,一篇名字有点浮夸的论文被上传到了预印版论文平台 arXiv 上,「xx is All You Need」这句话被 AI 领域的开发者们不断复述,甚至已经成了论文标题的潮流,而 Transformer 也不再是变形金刚的意思,它现在代表着 AI 领域最先进的技术。

六年后,回看当年的这篇论文,我们可以发现很多有趣或鲜为人知的地方,正如英伟达 AI 科学家 Jim Fan 所总结的那样。

Transformer六周年:当年连NeurIPS Oral都没拿到,8位作者已创办数家AI独角兽

「注意力机制」并不是 Transformer 作者所提出的

Transformer 模型抛弃了传统的 CNN 和 RNN 单元,整个网络结构完全是由注意力机制组成。

虽然 Transformer 论文的名字是《Attention is All You Need》,我们也因它而不断推崇注意力机制,但请注意一个有趣的事实:并不是 Transformer 的研究者发明了注意力,而是他们把这种机制推向了极致。

注意力机制(Attention Mechanism)是由深度学习先驱 Yoshua Bengio 带领的团队于 2014 年提出的:

《Neural Machine Translation by Jointly Learning to Align and Translate》,标题比较朴实。

在这篇 ICLR 2015 论文中,Bengio 等人提出了一种 RNN +「上下文向量」(即注意力)的组合。虽然它是 NLP 领域最伟大的里程碑之一,但相比 transformer,其知名度要低得多,Bengio 团队的论文至今已被引用 2.9 万次,Transformer 有 7.7 万次。

Transformer六周年:当年连NeurIPS Oral都没拿到,8位作者已创办数家AI独角兽

AI 的注意力机制,自然是仿照人类的视觉注意力而来。人类大脑里有一种天生能力:当我们看一幅图时,先是快速扫过图片,然后锁定需要重点关注的目标区域。

如果不放过任何局部信息,必然会作很多无用功,不利于生存。同样地,在深度学习网络中引入类似的机制可以简化模型,加速计算。从本质上说,Attention 就是从大量信息中有筛选出少量重要信息,并聚焦到这些重要信息上,忽略大多不重要的信息。

近年来,注意力机制被广泛应用在深度学习的各个领域,如在计算机视觉方向用于捕捉图像上的感受野,或者 NLP 中用于定位关键 token 或者特征。大量实验证明,添加了注意力机制的模型在图像分类、分割、追踪、增强以及自然语言识别、理解、问答、翻译中任务中均取得了明显的性能提升。

引入了注意力机制的 Transformer 模型可以看做一种通用序列计算机(general-purpose sequence computer),注意力机制允许模型在处理输入序列时根据序列中不同位置的相关性分配不同的注意力权重,这使得 Transformer 能够捕捉到长距离的依赖关系和上下文信息,从而提高序列处理的效果。

但在当年,不论是 Transformer 还是最初的 attention 论文都没有谈到通用序列计算机。相反,作者们认为它是解决一个狭窄而具体的问题 —— 机器翻译的机制。所以未来的我们追溯起 AGI 的起源时,说不定可以追溯到「不起眼」的谷歌翻译。

虽然被 NeurIPS 2017 接收,但连个 Oral 都没拿到

Transformer 这篇论文虽然现在影响力很大,但在当年的全球顶级 AI 会议 NeurIPS 2017 上,连个 Oral 都没拿到,更不用说拿到奖项了。当年大会共收到 3240 篇论文投稿,其中 678 篇被选为大会论文,Transformer 论文就是被接收的论文之一,在这些论文中,40 篇为 Oral 论文,112 篇为 Spotlight 论文,3 篇最佳论文,一篇 Test of time award 奖项,Transformer 无缘奖项。

虽然无缘 NeurIPS 2017 论文奖项,但 Transformer 的影响力大家也是有目共睹的。

Jim Fan 评价说:在一项有影响力的研究变得有影响力之前,人们很难意识到它的重要性,这不是评委的错。不过,也有论文足够幸运,能够第一时间被发现,比如何恺明等人提出的 ResNet,当年获得了 CVPR 2016 最佳论文,这一研究当之无愧,得到了 AI 顶会的正确认可。但在 2017 年那个当下,非常聪明的研究者也未必能够预测现在 LLM 带来的变革,就像 20 世纪 80 年代一样,很少有人能预见到 2012 年以来深度学习带来的海啸。

八位作者,人生各自精彩

当时这篇论文的作者共有 8 位,他们分别来自谷歌和多伦多大学,五年过去了,大部分论文作者都已离开了原机构。

2022 年 4 月 26 日,一家名为「Adept」的公司官宣成立,共同创始人有 9 位,其中就包括 Transformer 论文作者中的两位 Ashish Vaswani 和 Niki Parmar。

Transformer六周年:当年连NeurIPS Oral都没拿到,8位作者已创办数家AI独角兽

Ashish Vaswani 在南加州大学拿到博士学位,师从华人学者蒋伟(David Chiang)和黄亮(Liang Huang),主要研究现代深度学习在语言建模中的早期应用。2016 年,他加入了谷歌大脑并领导了 Transformer 的研究,2021 年离开谷歌。

Niki Parmar 硕士毕业于南加州大学,2016 年加入谷歌。工作期间,她为谷歌搜索和广告研发了一些成功的问答和文本相似度模型。她领导了扩展 Transformer 模型的早期工作,将其扩展到了图像生成、计算机视觉等领域。2021 年,她也离开谷歌。

在离开之后,两人参与创立了 Adept,并分别担任首席科学家(Ashish Vaswani)和首席技术官(Niki Parmar)。Adept 的愿景是创建一个被称为「人工智能队友」的 AI,该 AI 经过训练,可以使用各种不同的软件工具和 API。

2023 年 3 月,Adept 宣布完成 3.5 亿美元的 B 轮融资,公司估值超过 10 亿美元,晋升独角兽。不过,在 Adept 公开融资的时候,Niki Parmar 和 Ashish Vaswani 已经离开了 Adept,并创立了自己的 AI 新公司。不过,这家新公司目前还处于保密阶段,我们无法获取该公司的详细信息。

另一位论文作者 Noam Shazeer 是谷歌最重要的早期员工之一。他在 2000 年底加入谷歌,直到 2021 年最终离职,之后成为了一家初创企业的 CEO,名字叫做「Character.AI」。

Character.AI 创始人除了 Noam Shazeer,还有一位是 Daniel De Freitas,他们都来自谷歌的 LaMDA 团队。此前,他们在谷歌构建了支持对话程序的语言模型 LaMDA。

今年三月,Character.AI 宣布完成 1.5 亿美元融资,估值达到 10 亿美元,是为数不多有潜力与 ChatGPT 所属机构 OpenAI 竞争的初创公司之一,也是罕见的仅用 16 个月时间就成长为独角兽的公司。其应用程序 Character.AI 是一个神经语言模型聊天机器人,可以生成类似人类的文本响应并参与上下文对话。

Character.AI 于 2023 年 5 月 23 日在 Apple App Store 和 Google Play Store 发布,第一周下载量超过 170 万次。2023 年 5 月,该服务增加了每月 9.99 美元的付费订阅,称为 c.ai+,该订阅允许用户优先聊天访问,获得更快的响应时间和早期访问新功能等特权。

Transformer六周年:当年连NeurIPS Oral都没拿到,8位作者已创办数家AI独角兽

Aidan N. Gomez 早在 2019 年就已离开谷歌,之后担任 FOR.ai 研究员,现在是 Cohere 的联合创始人兼 CEO。

Cohere 是一家生成式 AI 初创公司,于 2019 年成立,其核心业务包括提供 NLP 模型,并帮助企业改进人机交互。三位创始人分别为 Ivan Zhang、Nick Frosst 和 Aidan Gomez,其中 Gomez 和 Frosst 是谷歌大脑团队的前成员。2021 年 11 月,Google Cloud 宣布他们将与 Cohere 合作,Google Cloud 将使用其强大的基础设施为 Cohere 平台提供动力,而 Cohere 将使用 Cloud 的 TPU 来开发和部署其产品。

值得注意的是,Cohere 刚刚获得 2.7 亿美元 C 轮融资,成为市值 22 亿美元的独角兽。

Transformer六周年:当年连NeurIPS Oral都没拿到,8位作者已创办数家AI独角兽

Łukasz Kaiser在 2021 年离开谷歌,在谷歌工作了 7 年零 9 个月,现在是 OpenAI 一名研究员。在谷歌担任研究科学家期间,他参与了机器翻译、解析及其他算法和生成任务的 SOTA 神经模型设计,是 TensorFlow 系统、Tensor2Tensor 库的共同作者。

Transformer六周年:当年连NeurIPS Oral都没拿到,8位作者已创办数家AI独角兽

Jakob Uszkoreit 于 2021 年离开谷歌,在谷歌工作时间长达 13 年,之后加入 Inceptive,成为联合创始人。Inceptive 是一家 AI 制药公司,致力于运用深度学习去设计 RNA 药物。

在谷歌工作期间,Jakob Uszkoreit 参与了组建谷歌助理的语言理解团队,早期还曾从事过谷歌翻译的工作。

Transformer六周年:当年连NeurIPS Oral都没拿到,8位作者已创办数家AI独角兽

Illia Polosukhin 于 2017 年离开谷歌,现在是 NEAR.AI(一家区块链底层技术公司)的联合创始人兼 CTO。

Transformer六周年:当年连NeurIPS Oral都没拿到,8位作者已创办数家AI独角兽

唯一还留在谷歌的是 Llion Jones,今年是他在谷歌工作的第 9 年。

Transformer六周年:当年连NeurIPS Oral都没拿到,8位作者已创办数家AI独角兽

如今,距离《 Attention Is All You Need 》论文发表已经过去 6 年了,原创作者们有的选择离开,有的选择继续留在谷歌,不管怎样,Transformer 的影响力还在继续。

到这里,我们也就讲完了《Transformer六周年:当年连NeurIPS Oral都没拿到,8位作者已创办数家AI独角兽》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于AI,发展的知识点!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
小米Civi 3迪士尼限定版:迪士尼元素融入UI设计,重磅亮相!小米Civi 3迪士尼限定版:迪士尼元素融入UI设计,重磅亮相!
上一篇
小米Civi 3迪士尼限定版:迪士尼元素融入UI设计,重磅亮相!
植保无人机助力果树病虫害防治
下一篇
植保无人机助力果树病虫害防治
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 互联网信息服务算法备案系统:如何完成算法备案流程
    互联网信息服务算法备案系统
    了解互联网信息服务算法备案系统,掌握如何进行算法备案的详细步骤和要求,确保您的互联网服务合规运营。
    58次使用
  • SEO标题魔匠AI:高质量学术写作平台,毕业论文生成与优化专家
    魔匠AI
    SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
    103次使用
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    136次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    263次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    124次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码