当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 时间序列也能和大模型结合?亚马逊最新工作,大模型可解释时序预测

时间序列也能和大模型结合?亚马逊最新工作,大模型可解释时序预测

来源:51CTO.COM 2023-07-27 22:04:30 0浏览 收藏

怎么入门科技周边编程?需要学习哪些知识点?这是新手们刚接触编程时常见的问题;下面golang学习网就来给大家整理分享一些知识点,希望能够给初学者一些帮助。本篇文章就来介绍《时间序列也能和大模型结合?亚马逊最新工作,大模型可解释时序预测》,涉及到,有需要的可以收藏一下

这几天亚马逊发布了一篇使用大模型做时间序列预测的工作,属于大模型在时序预测中的第一次探索,利用大模型提升金融场景预测中的多模态数据处理能力和可解释能力。这篇文章是一个有趣的探索工作,可以借鉴其思路,但要达到SOTA效果还需要进一步的研究。下面给大家介绍一下这篇文章的建模思路。

时间序列也能和大模型结合?亚马逊最新工作,大模型可解释时序预测

论文标题:Temporal Data Meets LLM - Explainable Financial Time Series Forecasting

下载地址https://arxiv.org/pdf/2306.11025v1.pdf

1、问题背景

金融领域是时间序列预测技术的一个重要应用场景。与普通的时序预测不同,金融领域的时间序列预测建模面对着更加复杂的挑战,而这些挑战可以使用大模型来解决,主要体现在以下3个方面。

第一点是如何建模复杂的序列间关系。在股价预测中,不同股票价格之间存在很强的依赖关系或关联关系,因此能否建模好序列间关系至关重要。大模型的序列建模能力和多序列关系建模很强,因此我们可以尝试将大模型这些能力应用到序列预测中。

第二点是对文本数据的处理能力。目前的金融场景时间序列预测问题,很多都重点研究如何处理金融资讯信息,融入到时间序列预测建模中。股价的波动很多程度上来源于金融资讯,只靠单纯的时间序列建模是无法涵盖全部信息的。这种多模态信息的有效引入,对于金融场景时序预测效果有很大帮助。大模型天然的具有强大的文本处理能力,因此自然成为这个问题的有力解决方案。

第三点是可解释性,这也是各个领域的深度学习模型都追求的一个点,如何让模型的预测结果更具可解释性,能让预测结果更有价值,指导我们的行动。大模型的可解释性也很强,例如通过思维链等方式让大模型生成给出答案的原因。

基于以上考虑,本文尝试了利用大模型做时间序列,同时解决上述3个问题。

2、实现方法

整体的建模方法主要包括对时间序列的处理、对文本信息的引入、prompt设计、基于Instruction Tuning的大模型微调4个部分。

时间序列处理:文中将时间序列通过离散化的方式转换为符号表示,文中的预测目标是纳斯达克100各个公司股票投资回报,即周期末相比周期初股价涨幅。文中将涨幅变成符号,比如D1代表跌1%以内,U2代表涨2%以内等等。处理成这种符号化的表示,方便输入到后续的大模型中。

文本信息引入:在文本信息方面,文中利用GPT4进行信息生成,包括公司的整体介绍、可能影响股价的优势和劣势等文本信息。此外,对于新闻资讯信息,使用GPT4进行摘要生成和关键字抽取,作为后续的输入。公司介绍和摘要生成的例子如下:

时间序列也能和大模型结合?亚马逊最新工作,大模型可解释时序预测

时间序列也能和大模型结合?亚马逊最新工作,大模型可解释时序预测

prompt设计:有了上述信息,整体的预测prompt如下图所示,输入包括离散化后的时间序列符号化表示、GPT4生成的公司简介、新闻摘要等信息,让大模型给出预测结果。

时间序列也能和大模型结合?亚马逊最新工作,大模型可解释时序预测

Instruction Tuning:只基于这种zero-shot的方式可能无法发挥大模型最强的能力,因此文中进一步采用了Instruction Tuning,使用上述方式构造30k的周预测和7k月预测数据,用开源的LLaMa模型进行Instruction Tuning。(关于Instruction Tuning在之前的文章有过多次介绍,本质上就是将任务转换成文本,以语言模型为目标微调大模型)

3、实验结果

本表展示了本文中的实验结果,主要对比了大模型之间的效果,并与一些简单时间序列预测方法进行了效果差异比较。整体来看,用大模型进行这种粗粒度预测是可行的,同时GPT4的效果非常显著,GPT4的few-shot效果要优于基于LLaMa的instruction tuning方法。

时间序列也能和大模型结合?亚马逊最新工作,大模型可解释时序预测

4、总结

大模型在序列数据上的应用,是一个值得研究的点。文中通过这种离散化时间序列的方式,进行基于大模型的预测,是有潜力改变金融场景时间序列预测范式的一个方式。

到这里,我们也就讲完了《时间序列也能和大模型结合?亚马逊最新工作,大模型可解释时序预测》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于模型,亚马逊,时间序列的知识点!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
使用Golang的Web框架Iris框架实现分布式系统监控使用Golang的Web框架Iris框架实现分布式系统监控
上一篇
使用Golang的Web框架Iris框架实现分布式系统监控
如何在golang中使用正则表达式验证密码是否包含空格
下一篇
如何在golang中使用正则表达式验证密码是否包含空格
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 讯飞AI大学堂免费AI认证证书:大模型工程师认证,提升您的职场竞争力
    免费AI认证证书
    科大讯飞AI大学堂推出免费大模型工程师认证,助力您掌握AI技能,提升职场竞争力。体系化学习,实战项目,权威认证,助您成为企业级大模型应用人才。
    19次使用
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    160次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    196次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    177次使用
  • 稿定PPT:在线AI演示设计,高效PPT制作工具
    稿定PPT
    告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
    167次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码