当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 一文读懂自动驾驶的激光雷达与视觉融合感知

一文读懂自动驾驶的激光雷达与视觉融合感知

来源:51CTO.COM 2023-06-29 15:58:22 0浏览 收藏

积累知识,胜过积蓄金银!毕竟在科技周边开发的过程中,会遇到各种各样的问题,往往都是一些细节知识点还没有掌握好而导致的,因此基础知识点的积累是很重要的。下面本文《一文读懂自动驾驶的激光雷达与视觉融合感知》,就带大家讲解一下知识点,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~

2022年是智能驾驶由L2向L3/L4跨越的窗口期,越来越多的汽车厂商开始布局更高级别的智能驾驶量产,汽车智能化时代已悄然而至。

随着激光雷达硬件的技术提升,车规级量产和成本下行,高级别智能驾驶功能促进了激光雷达在乘用车领域的量产上车,多款搭载激光雷达的车型将在今年交付,2022年也被称为“激光雷达上车元年”。

01 激光雷达传感器vs图像传感器

激光雷达是一种用于精准获取物体三维位置的传感器,本质上是激光探测和测距。凭借在目标轮廓测量、通用障碍物检出等方面所具有的极佳性能,正在成为L4自动驾驶的核心配置。

然而,激光雷达的测距范围(一般在200米左右,不同厂商的量产型号指标各异)导致感知范围远小于图像传感器。

又由于其角分辨率(一般为0.1°或0.2°)比较小,导致点云的分辨率远小于图像传感器,在远距离感知时,投射到目标物上的点可能及其稀疏,甚至无法成像。对于点云目标检测来说,算法真正能用的点云有效距离大约只有100米左右。

图像传感器能以高帧率、高分辨率获取周围复杂信息,且价格便宜,可以部署多个不同FOV和分辨率的传感器,用于不同距离和范围的视觉感知,分辨率可以达到2K-4K。

但图像传感器是一种被动式传感器,深度感知不足,测距精度差,特别是在恶劣环境下完成感知任务的难度会大幅提升。

在面对强光、夜晚低照度、雨雪雾等天气和光线环境,智能驾驶对传感器的算法要求很高。激光雷达虽然对环境光线影响不敏感,但对于积水路面、玻璃墙面等,测距将收到很大影响。

可以看出,激光雷达和图像传感器各有优劣。大多数高级别智能驾驶乘用车选择将不同传感器进行融合使用,优势互补、冗余融合。

这样的融合感知方案也成为了高级别自动驾驶的关键技术之一。

02 基于深度学习的点云和图像融合感知

点云和图像的融合属于多传感器融合(Multi-Sensor Fusion,MSF)的技术领域,有传统的随机方法和深度学习方法,按照融合系统中信息处理的抽象程度,主要分为三个层次:

数据层融合(Early Fusion)

首先将传感器的观测数据融合,然后从融合的数据中提取特征进行识别。在3D目标检测中,PointPainting(CVPR20)采用这种方式,PointPainting方法先是对图像做语义分割,并将分割后的特征通过点到图像像素的矩阵映射到点云上,然后将这个“绘制点”的点云送到3D点云的检测器对目标Box进行回归。

一文读懂自动驾驶的激光雷达与视觉融合感知

特征层融合(Deep Fusion)

先从每种传感器提供的观测数据中提取各自然数据特征,对这些特征融合后进行识别。在基于深度学习的融合方法中,这种方式对点云和图像分支都各自采用特征提取器,对图像分支和点云分支的网络在前反馈的层次中逐语义级别融合,做到多尺度信息的语义融合。

基于深度学习的特征层融合方法,对于多个传感器之间的时空同步要求很高,一旦同步不好,直接影响特征融合的效果。同时,由于尺度和视角的差异,LiDAR和图像的特征融合很难达到1+1>2的效果。

一文读懂自动驾驶的激光雷达与视觉融合感知

决策层融合(Late Fusion)

相对前两种来说,是复杂度最低的一种融合方式。不在数据层或特征层融合,是一种目标级别的融合,不同传感器网络结构互不影响,可以独立训练和组合。

由于决策层融合的两类传感器和检测器相互独立,一旦某传感器发生故障,仍可进行传感器冗余处理,工程上鲁棒性更好。

一文读懂自动驾驶的激光雷达与视觉融合感知

随着激光雷达与视觉融合感知技术的不断迭代,以及不断积累的知识场景与案例,会出现越来越多的全栈融合计算解决方案为自动驾驶带来更加安全与可靠的未来。

以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于科技周边的相关知识,也可关注golang学习网公众号。

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
利用Beego和Captcha实现验证码功能利用Beego和Captcha实现验证码功能
上一篇
利用Beego和Captcha实现验证码功能
Meta和OpenAI公司CEO公开支持欧盟推行AI监管方案
下一篇
Meta和OpenAI公司CEO公开支持欧盟推行AI监管方案
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO标题魔匠AI:高质量学术写作平台,毕业论文生成与优化专家
    魔匠AI
    SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
    11次使用
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    26次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    27次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    35次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    36次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码