当前位置:首页 > 文章列表 > Golang > Go教程 > Golang中如何实现缓存淘汰策略?

Golang中如何实现缓存淘汰策略?

2023-06-23 08:39:21 0浏览 收藏

编程并不是一个机械性的工作,而是需要有思考,有创新的工作,语法是固定的,但解决问题的思路则是依靠人的思维,这就需要我们坚持学习和更新自己的知识。今天golang学习网就整理分享《Golang中如何实现缓存淘汰策略?》,文章讲解的知识点主要包括,如果你对Golang方面的知识点感兴趣,就不要错过golang学习网,在这可以对大家的知识积累有所帮助,助力开发能力的提升。

Golang是近年来备受青睐的一门编程语言,它的特点之一就是高效且并发性强。在使用Golang开发Web应用时,我们经常会涉及到缓存的使用。缓存可以提高应用的性能和响应速度,但是如果我们没有恰当地处理缓存淘汰,就会导致缓存占用过多的内存,并影响系统的稳定性。本文将介绍Golang中如何实现缓存淘汰策略。

什么是缓存淘汰?

简单地说,缓存淘汰就是指当缓存空间不够用时,需要淘汰一些缓存数据,以便为新的缓存数据腾出空间。缓存数据淘汰的策略往往与应用的实际需求有关。

Golang中的缓存淘汰

在Golang中,我们可以使用标准库中的container包来实现缓存淘汰策略。该包提供了List和Heap两个数据结构,它们都可以用来实现缓存淘汰。

List

List是Golang标准库中的双向链表。我们可以把缓存数据按照某种规则添加到List中,并实时更新数据的使用情况。当缓存空间不足时,我们可以根据某种淘汰策略从链表尾部删除一些不再使用的缓存数据。

下面是一个简单的示例代码,用来实现LRU(Least Recently Used)淘汰策略:

type Cache struct {
    maxBytes  int64                    // 允许使用的最大内存
    usedBytes int64                    // 当前已使用的内存
    lruList   *list.List               // 双向链表
    cache     map[string]*list.Element // map 作为缓存数据的索引
    onEvicted func(key string, value []byte)
}

type entry struct {
    key   string
    value []byte
}

// Add 新增一个缓存
func (c *Cache) Add(key string, value []byte) {
    if ele, ok := c.cache[key]; ok {
        c.lruList.MoveToFront(ele)
        kv := ele.Value.(*entry)
        c.usedBytes += int64(len(value) - len(kv.value))
        kv.value = value
        return
    }
    ele := c.lruList.PushFront(&entry{key, value})
    c.cache[key] = ele
    c.usedBytes += int64(len(key) + len(value))
    if c.maxBytes > 0 && c.usedBytes > c.maxBytes {
        c.RemoveOldest()
    }
}

// Get 获取一个缓存
func (c *Cache) Get(key string) ([]byte, bool) {
    if ele, ok := c.cache[key]; ok {
        c.lruList.MoveToFront(ele)
        kv := ele.Value.(*entry)
        return kv.value, true
    }
    return nil, false
}

// RemoveOldest 删除最久未使用的缓存
func (c *Cache) RemoveOldest() { 
    ele := c.lruList.Back()
    if ele != nil {
        c.lruList.Remove(ele)
        kv := ele.Value.(*entry)
        delete(c.cache, kv.key)
        c.usedBytes -= int64(len(kv.key) + len(kv.value))
        if c.onEvicted != nil {
            c.onEvicted(kv.key, kv.value)
        }
    }
}

在上面的代码中,我们使用List保存缓存数据,并用cache map作为索引,方便快捷地查找某个缓存。当Cache的存储空间超限时,我们便从List尾部开始删除最久未使用的缓存(即LRU策略),以腾出空间。同时,我们还支持一些其他的特性,例如为每个缓存设置所需的最大内存,并支持在缓存数据被删除时执行一些特定的操作。

Heap

Heap是Golang标准库中的堆,它按照某个优先级规则(例如缓存数据的访问时间、数据的大小等)管理着一组数据,并根据规则自动实现数据的插入、删除和查询。同样,当缓存空间不足时,我们可以利用Heap自动淘汰一些数据。

下面是一个简单的示例代码,用来实现LFU(Least Frequently Used)淘汰策略:

type Item struct {
    Value  []byte
    Priority int // 优先级,即缓存访问次数
    Index  int    // 在 heap 中的索引
}

type PriorityQueue []*Item

// 实现 heap.Interface 接口的 Push 方法
func (pq *PriorityQueue) Push(x interface{}) {
    n := len(*pq)
    item := x.(*Item)
    item.Index = n
    *pq = append(*pq, item)
}

// 实现 heap.Interface 接口的 Pop 方法
func (pq *PriorityQueue) Pop() interface{} {
    old := *pq
    n := len(old)
    item := old[n-1]
    item.Index = -1 // 为了安全起见
    *pq = old[0 : n-1]
    return item
}

// 实现 heap.Interface 接口的 Len 方法
func (pq PriorityQueue) Len() int {
    return len(pq)
}

// 实现 heap.Interface 接口的 Less 方法
func (pq PriorityQueue) Less(i, j int) bool {
    return pq[i].Priority < pq[j].Priority
}

// 实现 heap.Interface 接口的 Swap 方法
func (pq PriorityQueue) Swap(i, j int) {
    pq[i], pq[j] = pq[j], pq[i]
    pq[i].Index = i
    pq[j].Index = j
}

type Cache struct {
    maxBytes  int64
    usedBytes int64
    cache     map[string]*Item
    queue     PriorityQueue
    onEvicted func(key string, value []byte)
}

// Add 新增一个缓存
func (c *Cache) Add(key string, value []byte) {
    if item, ok := c.cache[key]; ok {
        item.Priority++
        item.Value = value
        heap.Fix(&c.queue, item.Index)
    } else {
        item = &Item{Value: value, Priority: 1}
        c.cache[key] = item
        heap.Push(&c.queue, item)
    }
    c.usedBytes += int64(len(key) + len(value))
    if c.maxBytes > 0 && c.usedBytes > c.maxBytes {
        c.RemoveOldest()
    }
}

// Get 获取一个缓存
func (c *Cache) Get(key string) ([]byte, bool) {
    if item, ok := c.cache[key]; ok {
        item.Priority++
        heap.Fix(&c.queue, item.Index)
        return item.Value, true
    }
    return nil, false
}

// RemoveOldest 删除访问次数最少的缓存
func (c *Cache) RemoveOldest() {
    item := heap.Pop(&c.queue).(*Item)
    delete(c.cache, item.Value)
    c.usedBytes -= int64(len(item.Value) + item.Priority)
    if c.onEvicted != nil {
        c.onEvicted(item.Value, item.Value)
    }
}

在上面的代码中,我们利用Heap保存缓存数据,并使用cache map作为索引。与List不同的是,在heap中,我们是自动管理缓存数据的优先级和插入、删除等操作的。当Cache的存储空间超限时,堆会自动删除一些访问频率较低的缓存数据。

总结

在使用Golang编写Web应用时,缓存的使用往往是不可避免的。但是为了防止缓存数据占用过多的内存,我们必须正确地处理缓存淘汰。通过使用Golang标准库中的List和Heap数据结构,我们可以很轻松地实现常用的缓存淘汰策略,并为应用的稳定运行提供保障。

到这里,我们也就讲完了《Golang中如何实现缓存淘汰策略?》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于golang,缓存,淘汰策略的知识点!

成功定制人工智能模型的四个关键环节成功定制人工智能模型的四个关键环节
上一篇
成功定制人工智能模型的四个关键环节
Redis参考指南:从数据类型到操作指令
下一篇
Redis参考指南:从数据类型到操作指令
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    2次使用
  • Brev AI:零注册门槛的全功能免费AI音乐创作平台
    Brev AI
    探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
    2次使用
  • AI音乐实验室:一站式AI音乐创作平台,助力音乐创作
    AI音乐实验室
    AI音乐实验室(https://www.aimusiclab.cn/)是一款专注于AI音乐创作的平台,提供从作曲到分轨的全流程工具,降低音乐创作门槛。免费与付费结合,适用于音乐爱好者、独立音乐人及内容创作者,助力提升创作效率。
    2次使用
  • SEO标题PixPro:AI驱动网页端图像处理平台,提升效率的终极解决方案
    PixPro
    SEO摘要PixPro是一款专注于网页端AI图像处理的平台,提供高效、多功能的图像处理解决方案。通过AI擦除、扩图、抠图、裁切和压缩等功能,PixPro帮助开发者和企业实现“上传即处理”的智能化升级,适用于电商、社交媒体等高频图像处理场景。了解更多PixPro的核心功能和应用案例,提升您的图像处理效率。
    2次使用
  • EasyMusic.ai:零门槛AI音乐生成平台,专业级输出助力全场景创作
    EasyMusic
    EasyMusic.ai是一款面向全场景音乐创作需求的AI音乐生成平台,提供“零门槛创作 专业级输出”的服务。无论你是内容创作者、音乐人、游戏开发者还是教育工作者,都能通过EasyMusic.ai快速生成高品质音乐,满足短视频、游戏、广告、教育等多元需求。平台支持一键生成与深度定制,积累了超10万创作者,生成超100万首音乐作品,用户满意度达99%。
    3次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码