无需标注数据,「3D理解」进入多模态预训练时代!ULIP系列全面开源,刷新SOTA
今日不肯埋头,明日何以抬头!每日一句努力自己的话哈哈~哈喽,今天我将给大家带来一篇《无需标注数据,「3D理解」进入多模态预训练时代!ULIP系列全面开源,刷新SOTA》,主要内容是讲解等等,感兴趣的朋友可以收藏或者有更好的建议在评论提出,我都会认真看的!大家一起进步,一起学习!
通过对齐三维形状、二维图片以及相应的语言描述,多模态预训练方法也带动了3D表征学习的发展。
不过现有的多模态预训练框架收集数据的方法缺乏可扩展性,极大限制了多模态学习的潜力,其中最主要的瓶颈在于语言模态的可扩展性和全面性。
最近,Salesforce AI联手斯坦福大学和得克萨斯大学奥斯汀分校,发布了ULIP(CVP R2023)和ULIP-2项目,这些项目正在引领3D理解的新篇章。
论文链接:https://arxiv.org/pdf/2212.05171.pdf
论文链接:https://arxiv.org/pdf/2305.08275.pdf
代码链接:https://github.com/salesforce/ULIP
研究人员采用了独特的方法,使用3D点云、图像和文本进行模型的预训练,将它们对齐到一个统一的特征空间。这种方法在3D分类任务中取得了最先进的结果,并为跨领域任务(如图像到3D检索)开辟了新的可能性。
并且ULIP-2将这种多模态预训练变得可以不需要任何人工标注,从而可以大规模扩展。
ULIP-2在ModelNet40的下游零样本分类上取得了显著的性能提升,达到74.0%的最高准确率;在现实世界的ScanObjectNN基准上,仅用140万个参数就获得了91.5%的总体准确率,标志着在无需人类3D标注的可扩展多模态3D表示学习方面的突破。
对齐(3D,图像,文本)这三种特征的预训练框架示意图
代码以及发布的大规模tri-modal的数据集(「ULIP - Objaverse Triplets」和「ULIP - ShapeNet Triplets」)已经开源。
背景
3D理解是人工智能领域的重要组成部分,它让机器能像人类一样在三维空间中感知和互动。这种能力在自动驾驶汽车、机器人、虚拟现实和增强现实等领域都有着重要的应用。
然而,由于3D数据的处理和解释复杂性,以及收集和注释3D数据的成本,3D理解一直面临着巨大的挑战。
ULIP
Tri-modal 预训练框架以及其下游任务
ULIP(已经被CVPR2023接收)采用了一种独特的方法,使用3D点云、图像和文本进行模型的预训练,将它们对齐到一个统一的表示空间。
这种方法在3D分类任务中取得了最先进的结果,并为跨领域任务(如图像到3D检索)开辟了新的可能性。
ULIP的成功关键在于使用预先对齐的图像和文本编码器,如CLIP,它在大量的图像-文本对上进行预训练。
这些编码器将三种模态的特征对齐到一个统一的表示空间,使模型能够更有效地理解和分类3D对象。
这种改进的3D表示学习不仅增强了模型对3D数据的理解,而且还使得跨模态应用如zero-shot 3D分类和图像到3D检索成为可能,因为3D编码器获得了多模态上下文。
ULIP的预训练损失函数如下:
在ULIP的默认设置中,α被设置为0, β和θ被设置为1,每两个模态之间的对比学习损失函数的定义如下,这里M1和M2指三个模态中的任意两个模态:
ULIP还做了由图像到3D的retrieval的实验,效果如下:
实验结果可以看出ULIP预训练的模型已经能够学习到图像和三维点云间有意义的多模态特征。
令人惊讶的是,相较于其他的检索到的三维模型,第一名检索到的三维模型与查询图像的外观最为接近。
例如,当我们使用来自不同飞机类型(战斗机和客机)的图片进行检索(第二行和第三行),检索到的最接近的3D点云仍然保留了查询图像的微妙差异。
ULIP-2
这里是一个3D物体生成多角度文字描述的示例。我们首先使用一个视角将3D物体渲染成2D图像,然后使用一个大型的多模态模型为所有渲染出的图像生成描述
ULIP-2在ULIP的基础上,利用大型多模态模型为3D物体生成全方面对应的语言描述,从而收集可扩展的多模态预训练数据,无需任何人工标注,使预训练过程和训练后的模型更加高效并且增强其适应性。
ULIP-2的方法包括为每个3D物体生成多角度不同的语言描述,然后用这些描述来训练模型,使3D物体、2D图像、和语言描述在特征空间对齐一致。
这个框架使得无需手动注释就可以创建大量的三模态数据集,从而充分发挥多模态预训练的潜力。
ULIP-2还发布了生成的大规模三模态数据集:「ULIP - Objaverse Triplets」和「ULIP - ShapeNet Triplets」。
两个tri-modal的datasets的一些统计数据
实验结果
ULIP系列在多模态下游任务和3D表达的微调实验中均取得了惊人的效果,尤其ULIP-2中的预训练是完全不需要借助任何人工的标注就可以实现的。
ULIP-2在ModelNet40的下游零样本分类任务中取得了显著的提升(74.0%的top-1准确率);在真实世界的ScanObjectNN基准测试中,它仅用1.4M参数就取得了91.5%的总体准确率,这标志着在无需人工3D标注的情况下,实现了可扩展的多模态3D表示学习的突破。
消融实验
两篇论文均做了详尽的消融实验。
在「ULIP: Learning a Unified Representation of Language, Images, and Point Clouds for 3D Understanding」中,由于ULIP的预训练框架有三个模态的参与,所以作者用实验探究了究竟是只对齐其中的两个模态好还是对齐所有三个模态好,实验结果如下:
从实验结果中可以看到,在不同的3D backbone中,对齐三个模态一致的比只对齐两个模态好,这也应证了ULIP的预训练框架的合理性。
在「ULIP-2: Towards Scalable Multimodal Pre-training for 3D Understanding」中,作者探究了不同的大型多模态模型会对预训练的框架有什么影响,结果如下:
实验结果可以看出,ULIP-2框架预训练的效果可以随着使用的大型多模态模型的升级而提升,具有一定的成长性。
在ULIP-2中,作者还探索了在生成tri-modal的数据集是采用不同数量的视角会如何影响整体预训练的表现,实验结果如下:
实验结果显示,随着使用的视角数量的增加,预训练的模型的zero-shot classification的效果也会随之增加。
这也应证了ULIP-2中的观点,更全方位多样性的语言描述会对多模态预训练有正向的作用。
除此之外,ULIP-2还探究了取CLIP排序过的不同topk的语言描述会对多模态预训练有什么影响,实验结果如下:
实验结果表明:ULIP-2的框架对不同的topk有一定的鲁棒性,论文中采用了top 5作为默认设置。
结论
由Salesforce AI,斯坦福大学,得克萨斯大学奥斯汀分校联手发布的ULIP项目(CVPR2023)和ULIP-2正在改变3D理解领域。
ULIP将不同的模态对齐到一个统一的空间,增强了3D特征的学习并启用了跨模态应用。
ULIP-2进一步发展,为3D对象生成整体语言描述,创建并开源了大量的三模态数据集,并且这个过程无需人工标注。
这些项目在3D理解方面设定了新的基准,为机器真正理解我们三维世界的未来铺平了道路。
团队
Salesforce AI:
Le Xue (薛乐), Mingfei Gao (高明菲),Chen Xing(星辰),Ning Yu(于宁), Shu Zhang(张澍),Junnan Li(李俊男), Caiming Xiong(熊蔡明),Ran Xu(徐然),Juan carlos niebles, Silvio savarese。
斯坦福大学:
Prof. Silvio Savarese, Prof. Juan Carlos Niebles, Prof. Jiajun Wu(吴佳俊)。
UT Austin:
Prof. Roberto Martín-Martín。
终于介绍完啦!小伙伴们,这篇关于《无需标注数据,「3D理解」进入多模态预训练时代!ULIP系列全面开源,刷新SOTA》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!

- 上一篇
- 如何使用Go语言和Vue.js构建可编辑的表格组件

- 下一篇
- Go语言和MySQL数据库:如何进行数据增量更新?
-
- 科技周边 · 人工智能 | 2分钟前 |
- 即梦AI怎么去掉水印?手把手教你设置无痕输出超简单
- 393浏览 收藏
-
- 科技周边 · 人工智能 | 22分钟前 |
- 新能源车能跑高速了?服务区已建3.5万充电桩!
- 405浏览 收藏
-
- 科技周边 · 人工智能 | 24分钟前 |
- 快影接入DeepSeek-R1,手把手教你AI生成视频+多语言配音!
- 485浏览 收藏
-
- 科技周边 · 人工智能 | 36分钟前 |
- 深度学习神器DeepSeek全攻略!从入门到精通超详细教程
- 338浏览 收藏
-
- 科技周边 · 人工智能 | 59分钟前 |
- 小红书必备!DeepSeek爆款公式+3步教程,轻松制作高赞梗图~
- 156浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- DeepSeek+PS教程!手把手教你用AI轻松修图
- 404浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 深度体验DeepSeek-R1API!七大平台调用全流程保姆级教程
- 354浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 即梦AI模板特效怎么用?预设动画教程全解析
- 210浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 即梦ai怎么导出高清封面?手把手教你轻松搞定!
- 354浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 33次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 56次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 64次使用
-
- 稿定PPT
- 告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
- 61次使用
-
- Suno苏诺中文版
- 探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
- 64次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览