当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 连GPT-4都考不及格,17个大模型悉数落败,因果推理太难了

连GPT-4都考不及格,17个大模型悉数落败,因果推理太难了

来源:51CTO.COM 2023-06-22 17:10:49 0浏览 收藏

科技周边不知道大家是否熟悉?今天我将给大家介绍《连GPT-4都考不及格,17个大模型悉数落败,因果推理太难了》,这篇文章主要会讲到等等知识点,如果你在看完本篇文章后,有更好的建议或者发现哪里有问题,希望大家都能积极评论指出,谢谢!希望我们能一起加油进步!

自 ChatGPT 发布以来,大模型的涌现能力一直被人们称赞,包括强大的语言理解能力、生成能力、逻辑推理能力等。然而,最近一项研究表明,大模型在因果推理方面普遍性能很差,连 GPT-4 都不及格。

这项研究是由来自马克斯・普朗克研究所、苏黎世联邦理工学院(ETH)、密歇根大学、香港大学和 Meta AI 的研究者们共同完成的。研究目标就是探究大型语言模型(LLM)是否能根据相关性进行因果推理。

连GPT-4都考不及格,17个大模型悉数落败,因果推理太难了

论文地址:https://arxiv.org/abs/2306.05836

因果推理是一项重要的推理任务,获得因果关系主要有两种基本方式:一种是通过经验知识,例如,我们根据常识知道为朋友准备生日礼物会让他们开心;另一种是通过一些程序和规则进行纯粹的因果推理(Spirtes et al., 2000; Pearl, 2009; Peters et al., 2017)。

如下图 1 所示:如果 A 与 B 相关,那并不意味着 A 导致 B;如果 A 和 B 本来是相互独立的,但在给定 C 的情况下变得相关,那么可以推断,在这个封闭系统中,C 是 A 和 B 的共同效应(common effect)。

连GPT-4都考不及格,17个大模型悉数落败,因果推理太难了

该研究提出一项新的 NLP 任务 —— 相关因果推理 (CORR2CAUSE)。如果 LLM 的成功来源于捕捉项与项之间大量的统计相关性,那么在关键步骤缺失时,如何处理相关性并推理因果关系?因此,该研究认为 CORR2CAUSE 推理是大型语言模型 (LLM) 的一项必备技能。

构建数据集

首先,该研究收集整理了一个 CORR2CAUSE 数据集,用于测试大型语言模型纯粹的因果推理能力。该数据集中的所有问题都围绕 LLM 何时从相关性推断出因果关系的有无。为了系统地形成 CORR2CAUSE 数据集,该研究将泛化过程置于因果发现的正式框架中(Spirtes et al., 1993, 2000; Glymour et al., 2016; Spirtes and Zhang, 2016; Glymour et al., 2019),其中涵盖如何根据变量在观测数据中的统计相关性推断变量之间因果关系的规则。

连GPT-4都考不及格,17个大模型悉数落败,因果推理太难了

CORR2CAUSE 数据集包含 400K 个样本,有效样本占 18.57%,当且仅当统计相关性和潜在因果关系之间存在双射映射时,才将相关性 - 因果关系陈述对标记为有效。

连GPT-4都考不及格,17个大模型悉数落败,因果推理太难了

基于 CORR2CAUSE 数据集,该研究主要分析两个问题:

  • 现有的 LLM 在此任务上表现如何? 
  • 现有的 LLM 是否可以针对此任务进行重新训练或重新定位并获得强大的因果推理技能?

该研究通过实验表明,现有 17 个 LLM 在这个纯因果推理任务上表现均不佳。并且,尽管 LLM 在对数据进行微调后可以表现出更好的性能,但其因果推理技能并不稳健。

实验结果

现有 LLM 的 CORR2CAUSE 能力

如下表 4 所示,对于实验中所有 LLM 来说,纯因果推理都是一项非常具有挑战性的任务。其中,BART MNLI 的 F1 值最高,为 33.38%,甚至高于 GPT-4(29.08%)。值得注意的是,许多模型的表现比随机猜测还要差,这意味着它们在纯因果推理任务中完全失败。

连GPT-4都考不及格,17个大模型悉数落败,因果推理太难了

微调后的性能

接下来要解决的问题是:能否让 LLM 重新学习这项任务?

从下表 5 (a) 中的实验结果来看,在 CORR2CAUSE 上进行微调的 12 个模型表现得比较好,大多数模型都获得了显著的性能提升。其中,基于 BERT 的 NLI 模型微调之后表现最佳,RoBERTa-Large MNLI 在这个任务上达到了 94.74% 的 F1 分数,以及非常高的精确度、召回率和准确率得分。

连GPT-4都考不及格,17个大模型悉数落败,因果推理太难了

同时,上图 5 (b) 展示了受到干扰时各模型的实验结果,所有模型的性能都在急剧下降,表现最好的模型 RoBERTa-Large MNLI 则是性能下降最多的模型;然而,RoBERTa-Large MNLI 对变量重构最稳健,保持了 67.87 的较高 F1 分数。总的来说,现有 LLM 的稳健性比较差。

除了上述整体结果,该研究还进行了细粒度分析,以探索最强模型 RoBERTa-Large MNLI 在六种因果关系类型上的表现。

如下表 6 (a) 所示,RoBERTa-Large MNLI 模型在判断关系方面表现非常好,例如「Is-Parent」、「Is-Descendant」和「Has-Confounder」,这些 F1 分数都超过了 96%。然而,在「Has-Collider」关系上,它的表现稍微弱一些。这可能是因为 collider 关系是最特殊的类型,需要基于仅有的两个变量的无条件独立性和在有共同后代的条件下的相关性来识别 V-structure。

连GPT-4都考不及格,17个大模型悉数落败,因果推理太难了

感兴趣的读者可以阅读论文原文,了解更多研究细节。

好了,本文到此结束,带大家了解了《连GPT-4都考不及格,17个大模型悉数落败,因果推理太难了》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
零AI含量!纯随机数学无限生成逼真3D世界火了,普林斯顿华人一作零AI含量!纯随机数学无限生成逼真3D世界火了,普林斯顿华人一作
上一篇
零AI含量!纯随机数学无限生成逼真3D世界火了,普林斯顿华人一作
Golang中如何使用redis实现延迟队列。
下一篇
Golang中如何使用redis实现延迟队列。
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    27次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    42次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    39次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    51次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    42次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码