当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > iPhone两秒出图,目前已知的最快移动端Stable Diffusion模型来了

iPhone两秒出图,目前已知的最快移动端Stable Diffusion模型来了

来源:51CTO.COM 2023-06-20 18:20:26 0浏览 收藏

有志者,事竟成!如果你在学习科技周边,那么本文《iPhone两秒出图,目前已知的最快移动端Stable Diffusion模型来了》,就很适合你!文章讲解的知识点主要包括,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~

Stable Diffusion (SD)是当前最热门的文本到图像(text to image)生成扩散模型。尽管其强大的图像生成能力令人震撼,一个明显的不足是需要的计算资源巨大,推理速度很慢:以 SD-v1.5 为例,即使用半精度存储,其模型大小也有 1.7GB,近 10 亿参数,端上推理时间往往要接近 2min。

为了解决推理速度问题,学术界与业界已经开始对 SD 加速的研究,主要集中于两条路线:(1)减少推理步数,这条路线又可以分为两条子路线,一是通过提出更好的 noise scheduler 来减少步数,代表作是 DDIM [1],PNDM [2],DPM [3] 等;二是通过渐进式蒸馏(Progressive Distillation)来减少步数,代表作是 Progressive Distillation [4] 和 w-conditioning [5] 等。(2)工程技巧优化,代表作是 Qualcomm 通过 int8 量化 + 全栈式优化实现 SD-v1.5 在安卓手机上 15s 出图 [6],Google 通过端上 GPU 优化将 SD-v1.4 在三星手机上加速到 12s [7]。

尽管这些工作取得了长足的进步,但仍然不够快。

近日,Snap 研究院推出最新高性能 Stable Diffusion 模型,通过对网络结构、训练流程、损失函数全方位进行优化,在 iPhone 14 Pro 上实现 2 秒出图(512x512),且比 SD-v1.5 取得更好的 CLIP score。这是目前已知最快的端上 Stable Diffusion 模型!

iPhone两秒出图,目前已知的最快移动端Stable Diffusion模型来了

  • 论文地址:https://arxiv.org/pdf/2306.00980.pdf
  • Webpage: https://snap-research.github.io/SnapFusion

核心方法

Stable Diffusion 模型分为三部分:VAE encoder/decoder, text encoder, UNet,其中 UNet 无论是参数量还是计算量,都占绝对的大头,因此 SnapFusion 主要是对 UNet 进行优化。具体分为两部分:(1)UNet 结构上的优化:通过分析原有 UNet 的速度瓶颈,本文提出一套 UNet 结构自动评估、进化流程,得到了更为高效的 UNet 结构(称为 Efficient UNet)。(2)推理步数上的优化:众所周知,扩散模型在推理时是一个迭代的去噪过程,迭代的步数越多,生成图片的质量越高,但时间代价也随着迭代步数线性增加。为了减少步数并维持图片质量,我们提出一种 CFG-aware 蒸馏损失函数,在训练过程中显式考虑 CFG (Classifier-Free Guidance)的作用,这一损失函数被证明是提升 CLIP score 的关键!

下表是 SD-v1.5 与 SnapFusion 模型的概况对比,可见速度提升来源于 UNet 和 VAE decoder 两个部分,UNet 部分是大头。UNet 部分的改进有两方面,一是单次 latency 下降(1700ms -> 230ms,7.4x 加速),这是通过提出的 Efficient UNet 结构得到的;二是 Inference steps 降低(50 -> 8,6.25x 加速),这是通过提出的 CFG-aware Distillation 得到的。VAE decoder 的加速是通过结构化剪枝实现。

iPhone两秒出图,目前已知的最快移动端Stable Diffusion模型来了

下面着重介绍 Efficient UNet 的设计和 CFG-aware Distillation 损失函数的设计。

(1)Efficient UNet

我们通过分析 UNet 中的 Cross-Attention 和 ResNet 模块,定位速度瓶颈在于 Cross-Attention 模块(尤其是第一个 Downsample 阶段的 Cross-Attention),如下图所示。这个问题的根源是因为 attention 模块的复杂度跟特征图的 spatial size 成平方关系,在第一个 Downsample 阶段,特征图的 spatial size 仍然较大,导致计算复杂度高。

iPhone两秒出图,目前已知的最快移动端Stable Diffusion模型来了

为了优化 UNet 结构,我们提出一套 UNet 结构自动评估、进化流程:先对 UNet 进行鲁棒性训练(Robust Training),在训练中随机 drop 一些模块,以此来测试出每个模块对性能的真实影响,从而构建一个 “对 CLIP score 的影响 vs. latency” 的查找表;然后根据该查找表,优先去除对 CLIP score 影响不大同时又很耗时的模块。这一套流程是在线自动进行,完成之后,我们就得到了一个全新的 UNet 结构,称为 Efficient UNet。相比原版 UNet,实现 7.4x 加速且性能不降。

(2)CFG-aware Step Distillation

CFG(Classifier-Free Guidance)是 SD 推理阶段的必备技巧,可以大幅提升图片质量,非常关键!尽管已有工作对扩散模型进行步数蒸馏(Step Distillation)来加速 [4],但是它们没有在蒸馏训练中把 CFG 纳入优化目标,也就是说,蒸馏损失函数并不知道后面会用到 CFG。这一点根据我们的观察,在步数少的时候会严重影响 CLIP score。

为了解决这个问题,我们提出在计算蒸馏损失函数之前,先让 teacher 和 student 模型都进行 CFG,这样损失函数是在经过 CFG 之后的特征上计算,从而显式地考虑了不同 CFG scale 的影响。实验中我们发现,完全使用 CFG-aware Distillation 尽管可以提高 CLIP score, 但 FID 也明显变差。我们进而提出了一个随机采样方案来混合原来的 Step Distillation 损失函数和 CFG-aware Distillation 损失函数,实现了二者的优势共存,既显著提高了 CLIP score,同时 FID 也没有变差。这一步骤,实现进一步推理阶段加速 6.25 倍,实现总加速约 46 倍。

除了以上两个主要贡献,文中还有对 VAE decoder 的剪枝加速以及蒸馏流程上的精心设计,具体内容请参考论文。

实验结果

SnapFusion 对标 SD-v1.5 text to image 功能,目标是实现推理时间大幅缩减并维持图像质量不降,最能说明这一点的是下图:

iPhone两秒出图,目前已知的最快移动端Stable Diffusion模型来了

该图是在 MS COCO’14 验证集上随机选取 30K caption-image pairs 测算 CLIP score 和 FID。CLIP score 衡量图片与文本的语义吻合程度,越大越好;FID 衡量生成图片与真实图片之间的分布距离(一般被认为是生成图片多样性的度量),越小越好。图中不同的点是使用不同的 CFG scale 获得,每一个 CFG scale 对应一个数据点。从图中可见,我们的方法(红线)可以达到跟 SD-v1.5(蓝线)同样的最低 FID,同时,我们方法的 CLIP score 更好。值得注意的是,SD-v1.5 需要 1.4min 生成一张图片,而 SnapFusion 仅需要 1.84s,这也是目前我们已知最快的移动端 Stable Diffusion 模型!

下面是一些 SnapFusion 生成的样本:

iPhone两秒出图,目前已知的最快移动端Stable Diffusion模型来了

更多样本请参考文章附录。

除了这些主要结果,文中也展示了众多烧蚀分析(Ablation Study)实验,希望能为高效 SD 模型的研发提供参考经验:

(1)之前 Step Distillation 的工作通常采用渐进式方案 [4, 5],但我们发现,在 SD 模型上渐进式蒸馏并没有比直接蒸馏更有优势,且过程繁琐,因此我们在文中采用的是直接蒸馏方案。

iPhone两秒出图,目前已知的最快移动端Stable Diffusion模型来了

(2)CFG 虽然可以大幅提升图像质量,但代价是推理成本翻倍。今年 CVPR’23 Award Candidate 的 On Distillation 一文 [5] 提出 w-conditioning,将 CFG 参数作为 UNet 的输入进行蒸馏(得到的模型叫做 w-conditioned UNet),从而在推理时省却 CFG 这一步,实现推理成本减半。但是我们发现,这样做其实会造成图片质量下降,CLIP score 降低(如下图中,四条 w-conditioned 线 CLIP score 均未超过 0.30, 劣于 SD-v1.5)。而我们的方法则可以减少步数,同时将 CLIP score 提高,得益于所提出的 CFG-aware 蒸馏损失函数!尤其值得主要的是,下图中绿线(w-conditioned, 16 steps)与橙线(Ours,8 steps)的推理代价是一样的,但明显橙线更优,说明我们的技术路线比 w-conditioning [5] 在蒸馏 CFG guided SD 模型上更为有效。

iPhone两秒出图,目前已知的最快移动端Stable Diffusion模型来了

(3)既有 Step Distillation 的工作 [4, 5] 没有将原有的损失函数和蒸馏损失函数加在一起,熟悉图像分类知识蒸馏的朋友应该知道,这种设计直觉上来说是欠优的。于是我们提出把原有的损失函数加入到训练中,如下图所示,确实有效(小幅降低 FID)。

iPhone两秒出图,目前已知的最快移动端Stable Diffusion模型来了

总结与未来工作

本文提出 SnapFusion,一种移动端高性能 Stable Diffusion 模型。SnapFusion 有两点核心贡献:(1)通过对现有 UNet 的逐层分析,定位速度瓶颈,提出一种新的高效 UNet 结构(Efficient UNet),可以等效替换原 Stable Diffusion 中的 UNet,实现 7.4x 加速;(2)对推理阶段的迭代步数进行优化,提出一种全新的步数蒸馏方案(CFG-aware Step Distillation),减少步数的同时可显著提升 CLIP score,实现 6.25x 加速。总体来说,SnapFusion 在 iPhone 14 Pro 上实现 2 秒内出图,这是目前已知最快的移动端 Stable Diffusion 模型。

未来工作:

1.SD 模型在多种图像生成场景中都可以使用,本文囿于时间,目前只关注了 text to image 这个核心任务,后期将跟进其他任务(如 inpainting,ControlNet 等等)。

2. 本文主要关注速度上的提升,并未对模型存储进行优化。我们相信所提出的 Efficient UNet 仍然具备压缩的空间,结合其他的高性能优化方法(如剪枝,量化),有望缩小存储,并将时间降低到 1 秒以内,离端上实时 SD 更进一步。

好了,本文到此结束,带大家了解了《iPhone两秒出图,目前已知的最快移动端Stable Diffusion模型来了》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
MySQL数据库和Go语言:如何进行数据内部脱敏保护?MySQL数据库和Go语言:如何进行数据内部脱敏保护?
上一篇
MySQL数据库和Go语言:如何进行数据内部脱敏保护?
如何使用Go语言进行MySQL的数据分片操作
下一篇
如何使用Go语言进行MySQL的数据分片操作
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    24次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    38次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    37次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    48次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    41次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码