「模仿学习」只会套话?解释微调+130亿参数Orca:推理能力打平ChatGPT
知识点掌握了,还需要不断练习才能熟练运用。下面golang学习网给大家带来一个科技周边开发实战,手把手教大家学习《「模仿学习」只会套话?解释微调+130亿参数Orca:推理能力打平ChatGPT》,在实现功能的过程中也带大家重新温习相关知识点,温故而知新,回头看看说不定又有不一样的感悟!
自ChatGPT API开放后,大量的研究都选择利用ChatGPT和GPT-4等大型基础模型(LFM)的输出作为训练数据,然后通过模仿学习来提升小模型的能力。
但由于模仿信号流于表面、训练数据量不够大、缺乏严格的评估标准等问题,小模型的实际性能被高估了。
从效果上来看,小模型更倾向于模仿LFM的输出风格,而非推理过程。

论文链接:https://arxiv.org/pdf/2306.02707.pdf
为了应对这些挑战,微软最近发布了一篇长达51页论文,提出了一个130亿参数的Orca模型,可以学习模仿LFMs的推理过程。
研究人员为大模型设计了丰富的训练信号,使得Orca可以从GPT-4中学习到解释痕迹、逐步的思维过程、复杂的指令等,并由ChatGPT的教师协助指导;并通过采样和选择来挖掘大规模且多样化的模仿数据,可以进一步提升渐进式学习效果。
在实验评估中,Orca超过了其他SOTA指令微调模型,在BigBench Hard(BBH)等复杂的零样本推理基准中实现了比Vicuna-13B翻倍的性能表现,在AGIEval上也实现了42%的性能提升。

此外,Orca在BBH基准上还实现了与ChatGPT持平的性能,在SAT、LSAT、GRE和GMAT等专业和学术考试中只有4%的性能差距,并且都是在没有思维链的零样本设置下测量的。

研究结果表明,让模型从分步解释中学习,无论这些解释是由人类还是更高级的人工智能模型产生的,都是提高模型能力和技能的一个有前景的研究方向。
解释微调(Explanation Tuning)
数据集构造
在训练数据中,每个实例都包括三部分,即系统消息、用户查询和LFM回复。
系统消息(system message)放置在提示中开头的部分,提供给LFM基本的上下文、引导以及其他相关的细节。
系统消息可以用来改变回复的长度、描述AI助手的性格、建立可接受和不可接受的LFM行为,并确定AI模型的回复结构。
研究人员手工制作了16条系统信息来设计LFM不同类型的回复,可以生成创造性的内容以及解决信息查询问题,最重要的是能够根据提示生成解释和逐步推理的答案。

用户查询(user query)定义了希望LFM执行的实际任务。
为了获得大量的、多样化的用户查询,研究人员利用FLAN-v2集合,从中抽取500万个用户查询(FLAN-5M),并收集ChatGPT的回复;然后进一步从500万条指令中抽出100万条指令(FLAN-1M),收集GPT-4的回复。
FLAN-v2集合由五个子集合组成,即CoT、NiV2、T0、Flan 2021和Dialogue,其中每个子集包含多个任务,每个任务都是一个查询的集合。
每个子集合都与多个学术数据集相关,并且每个数据集都有一个或多个任务,主要关注零样本和少样本的查询。
在这项工作中,研究人员只取样训练Orca的零样本查询,并且没有从Dialogue子集中取样,因为这些查询往往缺乏背景,无法从ChatGPT中获得有用的回复。
让ChatGPT扮演Teaching Assistant
首先在FLAN-5M数据上训练Orca(ChatGPT增强),随后在FLAN-1M上进行第二阶段的训练(GPT-4增强)。
将ChatGPT作为中间的教师助手主要有两个原因:
1. 能力差距
虽然GPT-4的参数量没有公开,但130亿参数的Orca肯定比GPT-4要小很多倍,而ChatGPT和Orca之间的能力差距更小,更适合作为中间教师,并且这种方式已经被证明可以提高更小的学生模型在知识蒸馏中的模仿学习性能。
这种方式也可以看作是一种渐进式学习或课程学习,学生首先从较容易的例子中学习,然后再学习较难的例子,假定了较长的回复会比较短的回复更难模仿,可以从更大规模的教师模型中改进推理和逐步解释能力。
2. 成本和时间
从Azure OpenAI API进行大规模数据收集时会受到一些限制,包括每分钟请求的速率限制,防止流量过大;由于服务延迟问题,每分钟可用的token数量有限;提示长度和token补全的金钱成本。

相比之下,ChatGPT API比GPT-4终端更快、更便宜,所以从ChatGPT上收集了比GPT-4多5倍的数据。

从ChatGPT和GPT-4对应于不同系统消息的回复长度分布中可以观察到,GPT-4的回复平均比ChatGPT长1.5倍,使得Orca能够逐步从教师解释的复杂性中学习,并通过消融实验证明了教师帮助的影响。
训练
在分词阶段,研究人员利用LLaMA的字节对编码(BPE)分词器来处理输入的样本,其中多位数字会被分割成多个单数字,并回落到字节来分解未知的UTF-8字符。
为了处理可变长度的序列,在LLaMA分词器的词汇表中引入了一个填充词[[PAD]],最终的词汇表包含32001个token
为了优化训练过程并有效利用可用的计算资源,研究人员利用了packing技术,将多个输入实例串联成一个序列后再训练模型。
在packing的过程中,串联序列的总长度不超过max_len=2048 tokens,对输入的样本进行随机打乱后将分成几组,每组串联序列的长度最多为max_len
考虑到训练数据中增强指令的长度分布,每个序列的打包系数为2.7
为了训练Orca,研究人员选择只计算教师模型生成token的损失,也就是说学习生成以系统信息和任务指令为条件的回复,可以确保模型专注于从最相关和最有信息的token中学习,提高了训练过程的整体效率和效果。
最后在20个装有80GB内存的NVIDIA A100 GPU上训练Orca,先在FLAN-5M(ChatGPT增强)上训练4个epoch,花了160个小时;然后在FLAN-1M(GPT-4增强)上继续训练4个epoch
由于流量限制、终端负载以及回复的长度问题,从GPT-3.5-turbo(ChatGPT)和GPT-4的多个终端收集数据分别用了2周和3周的时间。
实验部分
研究人员主要验证了Orca在推理上的能力。

在AGIEval的实验中可以看到,Orca的表现与Text-da-Vinci-003相当,并实现了ChatGPT 88%的性能表现,不过明显落后于GPT-4
对于分析和推理任务,Vicuna的表现明显更差,只保留了62%的ChatGPT质量,表明这种开源语言模型的推理能力很差。
虽然Orca与Text-da-Vinci-003的表现相当,但仍然比ChatGPT低5分,Orca在与数学有关的任务(在SAT、GRE、GMAT中)上与ChatGPT表现出较大的差距。
与Vicuna相比,Orca显示出更强的性能,在每个类别上都超过了Vicuna,平均有42%的相对提高。
GPT-4的性能远远超过了所有其他模型,但在这个基准中仍有很大的提升空间,目前所有模型的性能都明显低于人类的得分。

Orca的性能根据系统信息的类型有很大的不同,对于训练的模型来说,空的系统消息往往效果很好。

Orca在不同任务的325个样本中超越了ChatGPT(Orca-beats-ChatGPT例子),其中大部分来自LogiQA(29%),而其他LSAT任务和SAT-英语任务各占不到10%
在Big-Bench Hard Results数据集上的推理评估结果显示,Orca在所有任务中的综合表现上略好于ChatGPT,但明显落后于GPT-4;比Vicuna性能高出113%

以上就是《「模仿学习」只会套话?解释微调+130亿参数Orca:推理能力打平ChatGPT》的详细内容,更多关于AI,学习的资料请关注golang学习网公众号!
人工智能时代的科幻译者怎么办?“做好翻译工作的高端10%”|文化观察
- 上一篇
- 人工智能时代的科幻译者怎么办?“做好翻译工作的高端10%”|文化观察
- 下一篇
- 在Go语言中使用Docker实现快速的部署和管理
-
- 科技周边 · 人工智能 | 22分钟前 |
- Claude3Opus与Sonnet对比选择指南
- 314浏览 收藏
-
- 科技周边 · 人工智能 | 33分钟前 |
- HeyGenAI服装功能使用指南
- 370浏览 收藏
-
- 科技周边 · 人工智能 | 37分钟前 |
- 豆包AI创意激发技巧全解析
- 132浏览 收藏
-
- 科技周边 · 人工智能 | 49分钟前 |
- 贾跃亭40-50万台目标FX4设计图曝光
- 339浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 特斯拉FSD安全报告:事故率远低于平均
- 413浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 | 高精度 多语言识别 语言支持 DeepSeekOCR 自动检测
- DeepSeekOCR支持哪些语言?
- 450浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3206次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3419次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3449次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4557次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3827次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览

