当前位置:首页 > 文章列表 > 文章 > python教程 > PythondHash算法入门指南

PythondHash算法入门指南

2025-12-16 10:55:30 0浏览 收藏
推广推荐
免费电影APP ➜
支持 PC / 移动端,安全直达

大家好,今天本人给大家带来文章《Python dHash算法使用教程》,文中内容主要涉及到,如果你对文章方面的知识点感兴趣,那就请各位朋友继续看下去吧~希望能真正帮到你们,谢谢!

dHash通过计算图像相邻像素差异生成64位哈希值,对内容变化敏感且具备一定亮度鲁棒性。首先缩放图像为9×8并转灰度图,比较每行相邻像素大小关系生成二进制序列,再转换为16进制字符串。Python中结合Pillow库可快速实现,利用汉明距离衡量哈希差异,距离越小图像越相似,通常小于5视为视觉相近,适用于图像去重与相似检索场景。

Python dHash算法如何使用

dHash(差异哈希)是一种常用于图像相似度比较的哈希算法。它通过计算图像像素之间的差异生成哈希值,对图像内容变化敏感但对亮度、对比度等小变动有一定鲁棒性。在Python中实现dHash非常简单,通常结合Pillow库处理图像。

1. 安装依赖库

使用dHash前需要安装图像处理库Pillow:

pip install Pillow

2. dHash算法原理简述

dHash的核心步骤如下:

  • 将图像缩放为9×8大小(8列用于计算8×8灰度差)
  • 转换为灰度图
  • 比较相邻像素:右边像素大于等于左边则对应位为1,否则为0
  • 生成64位哈希值(8×8=64)

3. Python实现dHash函数

下面是一个完整的dHash实现示例:

from PIL import Image

def dhash(image_path, hash_size=8):

打开图像并调整大小为 (hash_size + 1) x hash_size

img = Image.open(image_path)
img = img.convert('L').resize((hash_size + 1, hash_size), Image.Resampling.LANCZOS)

# 获取像素数据
pixels = list(img.getdata())

# 计算差异:每行比较相邻像素
difference = []
for row in range(hash_size):
    for col in range(hash_size):
        left_pixel = pixels[row * (hash_size + 1) + col]
        right_pixel = pixels[row * (hash_size + 1) + col + 1]
        difference.append(left_pixel > right_pixel)

# 转换为二进制哈希
decimal_value = 0
for i, diff in enumerate(difference):
    if diff:
        decimal_value += 2**i

return "{:0>16x}".format(decimal_value)  # 返回16字符hex字符串

4. 使用示例与比较图像相似度

你可以用以下代码比较两张图的dHash相似度:

def hamming_distance(hash1, hash2): # 计算两个哈希间的汉明距离 return sum(c1 != c2 for c1, c2 in zip(hash1, hash2))

示例使用

hash1 = dhash("image1.jpg") hash2 = dhash("image2.jpg")

print("Hash 1:", hash1) print("Hash 2:", hash2) print("汉明距离:", hamming_distance(hash1, hash2))

汉明距离越小,图像越相似。一般小于5认为视觉上接近。

基本上就这些。dHash实现简单、速度快,适合批量图像去重或查找相似图。注意确保输入图像路径正确,并处理可能的IO异常。实际应用中可缓存哈希值提升性能。

以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。

PyTorch张量均值高效计算方法PyTorch张量均值高效计算方法
上一篇
PyTorch张量均值高效计算方法
小米汽车官网入口与首页功能解析
下一篇
小米汽车官网入口与首页功能解析
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3318次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3530次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3562次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4682次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3935次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码