当前位置:首页 > 文章列表 > 文章 > python教程 > Python聚类分析用户分群技巧

Python聚类分析用户分群技巧

2025-12-13 21:54:39 0浏览 收藏
推广推荐
免费电影APP ➜
支持 PC / 移动端,安全直达

对于一个文章开发者来说,牢固扎实的基础是十分重要的,golang学习网就来带大家一点点的掌握基础知识点。今天本篇文章带大家了解《Python聚类分析用户分群方法详解》,主要介绍了,希望对大家的知识积累有所帮助,快点收藏起来吧,否则需要时就找不到了!

聚类拆分用户群体的核心是使结果反映业务逻辑,需兼顾数据准备、特征工程与结果解读;应构建RFM、时序、渠道等行为特征并标准化,避免K-means局限,选用K-means++/DBSCAN/GMM等算法,结合可视化与业务指标映射命名簇群,并做稳定性检验。

Python使用聚类算法拆分用户群体的常见分析方法【教程】

用聚类算法拆分用户群体,核心不是“跑通代码”,而是让聚类结果真正反映业务逻辑——数据准备、特征工程和结果解读,三者缺一不可。

选对特征:别只扔进几个ID和金额

用户聚类失效,八成卡在特征上。不能直接拿原始订单表就跑K-means。要围绕“行为模式”构造有意义的指标:

  • RFM衍生指标:最近一次消费距今天数(R)、消费频次(F)、总金额或平均单笔金额(M),再加一个“品类集中度”(如TOP3品类占比)
  • 行为时序特征:工作日/周末下单比、凌晨下单占比、从浏览到下单平均时长(需埋点支持)
  • 设备与渠道组合:iOS+微信小程序、安卓+APP、PC+搜索广告等交叉标签,转为one-hot后可参与聚类

注意:金额类字段必须标准化(如Z-score或MinMax),否则会主导距离计算;类别型变量别硬塞进数值聚类,优先用K-modes或先做嵌入(如Target Encoding + PCA)。

试几种算法,别死磕K-means

K-means假设簇是球形、大小相近、密度均匀——而真实用户分布常是长条状、有离群高价值户、或天然分层。建议按顺序尝试:

  • K-means++:比原始K-means更稳,scikit-learn里KMeans(init='k-means++')直接换
  • DBSCAN:适合发现“沉默高潜用户”或“异常薅羊毛群体”,自动识别噪声点,epsmin_samples调参重点看业务容忍度(比如“连续3天登录且每次停留>5分钟”才算有效行为)
  • Gaussian Mixture Model (GMM):输出每个用户属于各簇的概率,方便做灰度策略(如给“70%像高复购族”的用户推试用装)

评估不用只盯轮廓系数——画出前两个主成分的散点图,叠加聚类标签,肉眼能看出分离度是否合理。

聚完类,马上做业务映射

聚类结果只是编号(0,1,2…),不翻译成业务语言=白干。方法很简单:

  • 对每个簇,统计关键指标均值:复购率、客单价、7日留存、客服投诉率、优惠券使用率
  • 挑出区分度最大的2–3个指标,给簇命名。例如:“高价低频尝鲜族”(客单价Top10%、复购率Bottom20%、新品购买占比65%)
  • 抽样看10个该簇用户的实际行为路径:是否都集中在某类活动页?是否都在退款后7天内重新下单?找共性动作,验证标签合理性

避免起名玄学,比如“忠诚用户”“潜力用户”——要带条件,如“价格敏感但品类专一型(母婴类复购率82%,满减券使用率91%)”。

上线前必做一件事:稳定性检验

用上周数据聚出5个群,这周重跑还是5个群?各群人数比例波动是否<15%?用户跨群迁移是否集中在合理范围(如促销期“价格敏感族”临时流入“高活跃族”,活动结束回流)?

  • 每周用相同参数+新数据重跑,记录各簇中心点欧氏距离变化
  • 对高频迁移用户(连续2周跨不同簇)单独分析:是数据抖动?还是真发生了行为跃迁?后者可能是新机会点

稳定≠一成不变,而是变化可解释。如果某簇突然消失,先查是不是埋点漏传或活动规则变更,而不是急着调模型。

基本上就这些。聚类不是终点,而是把模糊的“用户分层”变成可定位、可触达、可验证的动作起点。

今天关于《Python聚类分析用户分群技巧》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

Win11通知音导致音量变小怎么处理Win11通知音导致音量变小怎么处理
上一篇
Win11通知音导致音量变小怎么处理
JS类型转换与检测全解析
下一篇
JS类型转换与检测全解析
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3294次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3503次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3535次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4648次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3912次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码