CP-SAT求解器进度与优化分析
编程并不是一个机械性的工作,而是需要有思考,有创新的工作,语法是固定的,但解决问题的思路则是依靠人的思维,这就需要我们坚持学习和更新自己的知识。今天golang学习网就整理分享《CP-SAT求解器进度与最优性分析》,文章讲解的知识点主要包括,如果你对文章方面的知识点感兴趣,就不要错过golang学习网,在这可以对大家的知识积累有所帮助,助力开发能力的提升。

本文详细阐述了如何准确衡量 CP-SAT 求解器的优化进度,特别是通过 `ObjectiveValue` 和 `BestObjectiveBound` 计算最优性间隙。文章分析了简单比率法的局限性,并引入了适用于正负目标值的通用间隙计算公式,同时提供了代码示例和关键注意事项,帮助用户更专业地评估求解器性能。
理解求解器进度与最优性间隙
在约束规划(CP)和混合整数规划(MIP)领域,评估求解器的优化进度是至关重要的。通常,我们希望了解当前找到的最佳解距离理论上的最优解还有多远。CP-SAT 求解器提供了 ObjectiveValue()(当前找到的最佳可行解的目标值)和 BestObjectiveBound()(目标值的最佳理论界限)这两个关键指标来辅助这一评估。
初始方法的局限性
一种直观的进度衡量方法是计算目标值与最佳界限的比率,例如 100 * ObjectiveValue() / BestObjectiveBound()。然而,这种方法存在显著局限性:
- 仅适用于正值目标函数: 当目标函数值始终为正时(例如,最大化布尔变量乘以正系数的和),此比率可能提供一个粗略的进度指示。
- 负系数或负目标值: 一旦引入负系数或允许目标值变为负数,此比率将失效。例如,当目标值为负时,一个接近 0 的负目标值可能代表一个糟糕的解,但其比率可能看起来“更好”。当最佳界限为负时,比率的解释也会变得复杂且不直观。
- 零值问题: 如果 BestObjectiveBound() 或 ObjectiveValue() 为零,比率计算将导致除以零错误或无意义的结果。
这些局限性表明,需要一种更通用、更鲁棒的方法来计算求解器进度,即最优性间隙(Optimality Gap)。
最优性间隙的定义与计算
最优性间隙是衡量当前最佳可行解与最佳理论界限之间差距的标准指标。它通常表示为百分比,反映了当前解距离最优解的相对距离。为了处理各种目标函数值(正、负、零),MIP 求解器通常采用以下通用公式来定义间隙:
通用最优性间隙公式: 对于最小化问题,目标是找到最小的 ObjectiveValue,而 BestObjectiveBound 是目标值的下限。 对于最大化问题,目标是找到最大的 ObjectiveValue,而 BestObjectiveBound 是目标值的上限。
一个鲁棒的间隙计算方法需要考虑目标值的符号和零值情况。参考商业求解器(如 CPLEX)的做法,一个广泛接受的、对符号和零值健壮的间隙公式如下:
$$ \text{Gap} = \frac{|\text{BestObjective} - \text{BestBound}|}{10^{-10} + |\text{BestObjective}|} $$
其中:
- BestObjective 指的是 solver.ObjectiveValue(),即当前找到的最佳可行解的目标值。
- BestBound 指的是 solver.BestObjectiveBound(),即目标值的最佳理论界限。
- 10^{-10} (或一个小的正数 epsilon) 是为了防止当 BestObjective 为零时出现除以零的错误,同时避免在 BestObjective 接近零时导致间隙值过大。
解释:
- 分子 |BestObjective - BestBound| 表示当前最佳解与最佳界限之间的绝对差值。
- 分母 10^{-10} + |BestObjective| 将这个绝对差值归一化,使其成为一个相对百分比。使用 |BestObjective| 作为基准是因为它代表了当前找到的最佳解的“大小”,能够更好地反映相对误差。
CP-SAT 中的应用: 在 CP-SAT 中,solver.ObjectiveValue() 对应于 BestObjective,solver.BestObjectiveBound() 对应于 BestBound。无论目标是最小化还是最大化,这个公式都能提供一个一致的间隙度量。
示例代码
以下 Python 代码片段展示了如何在 CP-SAT 求解过程中计算并监控最优性间隙:
from ortools.sat.python import cp_model
def solve_and_monitor_gap():
model = cp_model.CpModel()
# 声明变量
x = model.NewIntVar(-10, 10, 'x')
y = model.NewIntVar(-10, 10, 'y')
# 添加约束
model.Add(x + y >= 5)
model.Add(x - y <= 3)
# 定义目标函数 (这里以最小化为例,但公式对最大化也适用)
# 尝试一个可能产生负值或零的目标函数
model.Minimize(3 * x - 2 * y)
solver = cp_model.CpSolver()
solver.parameters.log_search_progress = True # 打印求解进度
solver.parameters.num_workers = 8 # 可以根据需要调整并行工作数
# 定义一个自定义的解决方案回调函数来监控进度
class GapMonitor(cp_model.CpSolverSolutionCallback):
def __init__(self):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__solution_count = 0
self.__initial_bound = None # 可以选择记录初始界限
def on_solution_callback(self):
self.__solution_count += 1
current_obj = self.ObjectiveValue()
best_bound = self.BestObjectiveBound()
# 记录初始界限(可选)
if self.__initial_bound is None:
self.__initial_bound = best_bound
# 计算最优性间隙
# 使用一个小的epsilon值来避免除以零,并处理目标值接近零的情况
epsilon = 1e-10
if abs(current_obj) < epsilon and abs(best_bound) < epsilon:
gap = 0.0 # 如果两者都接近零,则认为间隙为零
else:
gap = abs(current_obj - best_bound) / (epsilon + abs(current_obj))
print(f"Solution #{self.__solution_count}:")
print(f" ObjectiveValue: {current_obj}")
print(f" BestObjectiveBound: {best_bound}")
print(f" Optimality Gap: {gap:.4f} ({(gap * 100):.2f}%)")
print("-" * 30)
# 创建并注册回调
monitor = GapMonitor()
status = solver.Solve(model, monitor)
print("\nSolver finished.")
print(f"Solver status: {solver.StatusName(status)}")
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
print(f"Final Objective Value: {solver.ObjectiveValue()}")
print(f"Final Best Objective Bound: {solver.BestObjectiveBound()}")
final_obj = solver.ObjectiveValue()
final_bound = solver.BestObjectiveBound()
epsilon = 1e-10
if abs(final_obj) < epsilon and abs(final_bound) < epsilon:
final_gap = 0.0
else:
final_gap = abs(final_obj - final_bound) / (epsilon + abs(final_obj))
print(f"Final Optimality Gap: {final_gap:.4f} ({(final_gap * 100):.2f}%)")
else:
print("No solution found or problem is infeasible/unbounded.")
if __name__ == '__main__':
solve_and_monitor_gap()注意事项与总结
- 间隙并非时间预测: 最优性间隙可以很好地衡量当前解的质量,但它并不能准确预测求解器还需要多少时间才能找到最优解或达到更小的间隙。求解器的搜索路径是非线性的,间隙的收敛速度可能在不同阶段差异很大。
- 最佳界限的动态性: BestObjectiveBound() 也会在求解过程中不断改进。有时,界限的改进可能比目标值的改进更显著。为了更全面地反映进度,可以考虑记录初始的 BestObjectiveBound(),并与当前的界限进行比较,以了解界限本身的收敛情况。
- 数值稳定性: 在计算间隙时,使用一个小的正数 epsilon (例如 1e-10) 作为分母的一部分至关重要,以避免在 ObjectiveValue() 为零时出现除以零的错误。
- 最大化与最小化: 上述通用间隙公式对最大化和最小化问题都适用,因为它关注的是目标值和界限之间的绝对差距,并将其相对化。对于最小化问题,ObjectiveValue 应该接近 BestObjectiveBound(从上方逼近);对于最大化问题,ObjectiveValue 应该接近 BestObjectiveBound(从下方逼近)。
通过理解和正确应用最优性间隙的概念,并使用鲁棒的计算公式,开发者可以更准确、专业地评估 CP-SAT 求解器的性能和优化进度,无论目标函数是正、负还是零。
本篇关于《CP-SAT求解器进度与优化分析》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!
Bulma表单验证样式统一技巧
- 上一篇
- Bulma表单验证样式统一技巧
- 下一篇
- 妖精漫画官网入口及免费看漫方法
-
- 文章 · python教程 | 40分钟前 |
- Python自定义异常类怎么创建
- 450浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python抓取赛狗数据:指定日期赛道API教程
- 347浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python3中datetime常用转换方式有哪些?
- 464浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PyCharm无解释器问题解决方法
- 290浏览 收藏
-
- 文章 · python教程 | 1小时前 | 性能优化 Python正则表达式 re模块 匹配结果 正则模式
- Python正则表达式入门与使用技巧
- 112浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- MacPython兼容LibreSSL的解决方法
- 324浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- OdooQWeb浮点转整数技巧
- 429浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- VSCodePython开发全流程详解
- 348浏览 收藏
-
- 文章 · python教程 | 2小时前 | 模块 包 代码复用 import Python函数模块化
- Python函数模块化技巧与实践解析
- 391浏览 收藏
-
- 文章 · python教程 | 2小时前 | Flask web开发
- Flask框架入门教程:Web开发实战指南
- 324浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3178次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3389次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3418次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4523次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3797次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

