当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > Meta用《圣经》训练超多语言模型:识别1107种、辨认4017种语言

Meta用《圣经》训练超多语言模型:识别1107种、辨认4017种语言

来源:51CTO.COM 2023-05-25 08:17:10 0浏览 收藏
推广推荐
免费电影APP ➜
支持 PC / 移动端,安全直达

在IT行业这个发展更新速度很快的行业,只有不停止的学习,才不会被行业所淘汰。如果你是科技周边学习者,那么本文《Meta用《圣经》训练超多语言模型:识别1107种、辨认4017种语言》就很适合你!本篇内容主要包括##content_title##,希望对大家的知识积累有所帮助,助力实战开发!

在《圣经》中有一个巴别塔的故事,说是人类联合起来计划兴建一座高塔,希望能通往天堂,但神扰乱了人类的语言,计划也就因此失败。到了今天,AI 技术有望拆除人类语言之间的藩篱,帮助人类造出文明的巴别塔。

近日,Meta 的一项研究向这个方面迈出了重要一步,他们将新提出的方法称为 Massively Multilingual Speech(超多语言语音 / MMS),其以《圣经》作为训练数据的一部分,得到了以下成果:

  • 在 1107 种语言上用 wave2vec 2.0 训练得到了一个有 10 亿参数的多语言语音识别模型,相比于 OpenAI 的 Whisper 模型,其错误率降低了 50% 以上。 
  • 单个音频合成模型就支持这 1107 种语言的文本转语音(TTS)。 
  • 开发了一个能够辨别 4017 种语言的语言辨识分类器。 

对于很多罕见语言的数据稀少问题,Meta 是如何解决的呢?他们采用的方法很有意思,即采用宗教的语料库,因为像是《圣经》这样的语料具有最「对齐的」语音数据。尽管这个数据集偏向宗教内容并且主要是男性声音,但其论文表明这个模型在其它领域以及使用女声时也表现优良。这是基础模型的涌现行为,着实让人惊叹。而更让人惊叹的是,Meta 将新开发的模型(语音识别、TTS 和语言辨识)都免费发布出来了!

  • 模型下载:https://github.com/facebookresearch/fairseq/tree/main/examples/mms
  • 论文地址:https://research.facebook.com/publications/scaling-speech-technology-to-1000-languages/

新提出的方法

为了打造出一个能识别千言万语的语音模型,首要的挑战是收集各种语言的音频数据,因为现目前已有的最大语音数据集也只有至多 100 种语言。为了克服这个问题,Meta 的研究者使用了宗教文本,比如《圣经》,这些文本已被翻译成了许多不同语言,并且那些译本都已被广泛研究过。这些译本都有人们用不同语言阅读的录音,并且这些音频也是公开可用的。使用这些音频,研究者创建了一个数据集,其中包含人们用 1100 种语言阅读《新约》的音频,其中每种语言的平均音频长度为 32 小时。

然后他们又纳入了基督教的其它许多读物的无标注录音,从而将可用语言数量增加到了 4000 以上。尽管这个数据集领域单一,并且大都是男声,但分析结果表明 Meta 新开发的模型在女声上表现也同样优良,并且该模型也不会格外偏向于产生更宗教式的语言。研究者在博客中表示,这主要是得益于他们使用的 Connectionist Temporal Classification(连接主义时间分类)方法,相比于大型语言模型(LLM)或序列到序列语音识别模型,这种方法要远远更为受限。

Meta用《圣经》训练超多语言模型:识别1107种、辨认4017种语言

潜在的性别偏见情况分析。在 FLEURS 基准上,这个在超多语言语音(MMS)数据集上训练的自动语音识别模型在男声和女声上的错误率是差不多的。

为了提升数据质量,使之能被机器学习算法使用,他们还采用了一些预处理方法。首先,他们在现有的 100 多种语言的数据上训练了一个对齐模型,然后再搭配使用了一个高效的强制对齐算法,该算法可处理 20 分钟以上的超长录音。之后,经过多轮对齐过程,最终再执行一步交叉验证过滤,基于模型准确度移除可能未对齐的数据。为了方便其他研究者创建新的语音数据集,Meta 将该对齐算法添加到了 PyTorch 并放出了该对齐模型。

要训练出普遍可用的监督式语音识别模型,每种语言仅有 32 小时的数据可不够。因此,他们的模型是基于 wav2vec 2.0 开发的,这是他们之前在自监督语音表征学习上的研究成果,能极大减少训练所需的有标注数据量。具体来说,研究者使用 1400 多种语言的大约 50 万小时语音数据训练了一个自监督模型 —— 这个语言数量已经超过之前任何研究的五倍以上了。然后,基于具体的语音任务(比如多语言语音识别或语言辨识),研究者再对所得模型进行微调。

结果

研究者在一些已有基准上评估了新开发的模型。

其多语言语音识别模型的训练使用了含 10 亿参数的 wav2vec 2.0 模型,训练数据集包含 1100 多种语言。随着语言数量增加,模型性能确实会下降,但下降幅度非常小:当语言数量从 61 种增加到 1107 种时,字符错误率仅上升了 0.4%,但语言覆盖范围却增加了 18 倍以上。

Meta用《圣经》训练超多语言模型:识别1107种、辨认4017种语言

在 61 种 FLEURS 语言的基准测试上,随语言数量增长的字符错误率变化情况,错误率越高,模型越差。

通过对比 OpenAI 的 Whisper 模型,研究者发现他们的模型的词错误率仅有 Whisper 的一半,而同时新模型支持的语言数量还多 11 倍。这个结果足以表明新方法的卓越能力。

Meta用《圣经》训练超多语言模型:识别1107种、辨认4017种语言

在可直接比较的 54 种 FLEURS 语言的基准测试上,OpenAI Whisper 与 MMS 的词错误率对比。

接下来,使用之前已有的数据集(如 FLEURS 和 CommonVoice)和新数据集,Meta 的研究者还训练了一个语言辨识(LID)模型,并在 FLEURS LID 任务上进行了评估。结果表明,新模型不仅表现很棒,而且支持的语言数量也增加了 40 倍。

之前的研究在 VoxLingua-107 基准上也仅支持 100 多种语言,而 MMS 支持超过 4000 种语言。

另外 Meta 还构建了一个支持 1100 种语言的文本转语音系统。当前文本转语音模型的训练数据通常是来自单个说话人的语音语料。MMS 数据的一个局限性是许多语言都只有少量说话人,甚至往往只有一个说话人。但是,在构建文本转语音系统时,这却成了一个优势,于是 Meta 就顺便造了一个支持 1100 多种语言的 TTS 系统。研究者表示,这些系统生成的语音质量其实相当好,下面给出了几个例子。

约鲁巴语、伊洛科语和迈蒂利语的 MMS 文本转语音模型演示。

尽管如此,研究者表示 AI 技术都仍不完美,MMS 也是如此。举个例子,MMS 在语音转文本时可能错误转录选定的词或短语。这可能导致输出结果中出现冒犯性和 / 或不准确的语言。研究者强调了与 AI 社区合作共同进行负责任开发的重要性。

用单个模型支持千言万语的价值

世界上有许多语言濒临灭绝,而当前的语音识别和语音生成技术的局限性只会进一步加速这一趋势。研究者在博客中设想:也许技术能鼓励人们留存自己的语言,因为有了好的技术后,他们完全可以使用自己喜欢的语言来获取信息和使用技术。

他们相信 MMS 项目是朝这个方向迈出的重要一步。他们还表示这个项目还将继续开发,未来还将支持更多语言,甚至还会解决方言和口音的难题。

今天带大家了解了的相关知识,希望对你有所帮助;关于科技周边的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
OpenAI 的 20 美元 ChatGPT Plus 计划胜过非正式发布的 42 美元专业级OpenAI 的 20 美元 ChatGPT Plus 计划胜过非正式发布的 42 美元专业级
上一篇
OpenAI 的 20 美元 ChatGPT Plus 计划胜过非正式发布的 42 美元专业级
安装双系统的详细教程
下一篇
安装双系统的详细教程
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3204次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3417次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3446次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4555次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3824次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码