使用TensorFlow和Keras创建猫狗图片深度学习分类器
有志者,事竟成!如果你在学习科技周边,那么本文《使用TensorFlow和Keras创建猫狗图片深度学习分类器》,就很适合你!文章讲解的知识点主要包括,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~

本文中,我们将利用TensorFlow和Keras开发一个图像分类器,能够对猫和狗的图像进行区分。我们将使用TensorFlow数据集中的cats_vs_dogs数据集,以实现此目标。该数据集由25000张打过标签的猫和狗的图像组成,其中80%的图像用于训练,10%用于验证,10%用于测试。
加载数据
我们开始使用TensorFlow Datasets加载数据集。将数据集拆分为训练集、验证集和测试集,分别占数据的80%、10%和10%,并定义一个函数来显示数据集中的一些样本图像。
<code>import tensorflow as tfimport matplotlib.pyplot as pltimport tensorflow_datasets as tfds# 加载数据(train_data, validation_data, test_data), info = tfds.load('cats_vs_dogs', split=['train[:80%]', 'train[80%:90%]', 'train[90%:]'], with_info=True, as_supervised=True)# 获取图像的标签label_names = info.features['label'].names# 定义一个函数来显示一些样本图像plt.figure(figsize=(10, 10))for i, (image, label) in enumerate(train_data.take(9)):ax = plt.subplot(3, 3, i + 1)plt.imshow(image)plt.title(label_names[label])plt.axis('off')</code>
预处理数据
在训练模型之前,需要对数据进行预处理。将把图片的大小调整为150x150像素的统一尺寸,将像素值归一化为0和1之间,并对数据进行批处理,这样就可以将其分批导入模型中。
<code>IMG_SIZE = 150</code>
<code>def format_image(image, label):image = tf.cast(image, tf.float32) / 255.0# Normalize the pixel valuesimage = tf.image.resize(image, (IMG_SIZE, IMG_SIZE))# Resize to the desired sizereturn image, labelbatch_size = 32train_data = train_data.map(format_image).shuffle(1000).batch(batch_size)validation_data = validation_data.map(format_image).batch(batch_size)test_data = test_data.map(format_image).batch(batch_size)</code>

搭建模型
本文将使用预先训练好的MobileNet V2模型作为基础模型,并在其中添加一个全局平均池化层和一个紧密层来进行分类。本文将冻结基础模型的权重,以便在训练期间只更新顶层的权重。
<code>base_model = tf.keras.applications.MobileNetV2(input_shape=(IMG_SIZE, IMG_SIZE, 3), include_top=False, weights='imagenet')base_model.trainable = False</code>
<code>global_average_layer = tf.keras.layers.GlobalAveragePooling2D()prediction_layer = tf.keras.layers.Dense(1)model = tf.keras.Sequential([base_model,global_average_layer,prediction_layer])model.compile(optimizer=tf.keras.optimizers.RMSprop(lr=0.0001),loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),metrics=['accuracy'])</code>
训练模型
In this article, the model will undergo training for three cycles and will be validated on the verification set at the end of each cycle.。我们将在训练后保存模型,这样就可以在以后的测试中使用它。
<code>global_average_layer = tf.keras.layers.GlobalAveragePooling2D()prediction_layer = tf.keras.layers.Dense(1)model = tf.keras.Sequential([base_model,global_average_layer,prediction_layer])model.compile(optimizer=tf.keras.optimizers.RMSprop(lr=0.0001),loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),metrics=['accuracy'])</code>
<code>history = model.fit(train_data,epochs=3,validation_data=validation_data)</code>

模型历史
如果想知道Mobilenet V2层是如何工作的,如下图所示是该层的一个结果。

评估模型
训练完成后将在测试集上评估该模型,看看它在新数据上的表现如何。
<code>loaded_model = tf.keras.models.load_model('cats_vs_dogs.h5')test_loss, test_accuracy = loaded_model.evaluate(test_data)</code><code>print('Test accuracy:', test_accuracy)</code>进行预测
最后,本文将使用该模型对测试集中的一些样本图像进行预测,并显示结果。
<code>for image , _ in test_.take(90) : passpre = loaded_model.predict(image)plt.figure(figsize = (10 , 10))j = Nonefor value in enumerate(pre) : plt.subplot(7,7,value[0]+1)plt.imshow(image[value[0]])plt.xticks([])plt.yticks([])if value[1] > pre.mean() :j = 1color = 'blue' if j == _[value[0]] else 'red'plt.title('dog' , color = color)else : j = 0color = 'blue' if j == _[value[0]] else 'red'plt.title('cat' , color = color)plt.show()</code>
我们成功地使用了TensorFlow和Keras创建了一个图像分类器,它可以准确地区分猫和狗的图像。通过一些调整和微调,也可以将这种方法应用于其他图像分类问题。
以上就是《使用TensorFlow和Keras创建猫狗图片深度学习分类器》的详细内容,更多关于深度学习,TensorFlow,Keras的资料请关注golang学习网公众号!
华为浏览器怎么屏蔽网站
- 上一篇
- 华为浏览器怎么屏蔽网站
- 下一篇
- ChatGPT编程准确率暴降13%!UIUC&南大新基准让AI代码现原形了
-
- 科技周边 · 人工智能 | 39分钟前 | Notion数据库 Relation字段 Rollup字段 Lookup字段 InlineRelation视图
- Notion数据库怎么关联?多库关系设置教程
- 301浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 贾跃亭:FF将与特斯拉合作FSD技术
- 409浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 | AdobeFirefly 风格关键词 形状提示 图像补缺 几何形状
- AdobeFirefly形状补缺技巧分享
- 403浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 | AI工具 ai怎么裁剪图片
- XnViewAI裁剪教程详解与技巧
- 281浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- AI剪辑教程:生成文本+剪辑全流程解析
- 147浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- ChatGPT公益文案模板,非营利工作者实用指南
- 355浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3201次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3414次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3444次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4552次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3822次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览

