redis分布式ID解决方案示例详解
来源:脚本之家
2023-05-12 19:27:23
0浏览
收藏
小伙伴们对数据库编程感兴趣吗?是否正在学习相关知识点?如果是,那么本文《redis分布式ID解决方案示例详解》,就很适合你,本篇文章讲解的知识点主要包括解决方案、redis分布式ID。在之后的文章中也会多多分享相关知识点,希望对大家的知识积累有所帮助!
常用的分布式ID解决方案
在分布式系统中,生成全局唯一ID是非常重要的,因为在分布式系统中,多个节点同时生成ID可能会导致ID冲突。
下面介绍几种常用的分布式ID解决方案。

UUID
UUID(通用唯一标识符)是由128位数字组成的标识符,它可以保证在全球范围内的唯一性,因为其生成算法基于时间戳、节点ID等因素。UUID可以使用Java自带的UUID类来生成,如下所示:
javaCopy code
import java.util.UUID;
public class UuidGenerator {
public static void main(String[] args) {
UUID uuid = UUID.randomUUID();
System.out.println(uuid.toString());
}
}
UUID的优点是简单易用,无需额外的配置和管理,可以直接使用Java自带的UUID类生成。但是UUID长度较长(128位),不太适合作为数据库表的主键,且不易于排序和索引。
Snowflake
Snowflake是Twitter开源的一种分布式ID生成算法,它可以生成64位的唯一ID,其中包含了时间戳、数据中心ID和机器ID等信息。Snowflake算法的Java代码如下所示:
Snowflake算法的Java代码:
javaCopy code
public class SnowflakeGenerator {
private final static long START_STMP = 1480166465631L;
private final static long SEQUENCE_BIT = 12;
private final static long MACHINE_BIT = 5;
private final static long DATACENTER_BIT = 5;
private final static long MAX_DATACENTER_NUM = -1L ^ (-1L MAX_DATACENTER_NUM || datacenterId MAX_MACHINE_NUM || machineId
<p>Snowflake算法的优点是生成ID的性能高,且ID长度较短(64位),可以作为数据库表的主键,且便于排序和索引。但是需要注意,如果集群中的节点数超过了机器ID所占的位数,或者集群规模很大,时间戳位数不够用,那么就需要考虑其他的分布式ID生成算法。</p>
<h3>Leaf</h3>
<p>Leaf是美团点评开源的一种分布式ID生成算法,它可以生成全局唯一的64位ID。Leaf算法的Java代码如下所示:</p>
<h4>Leaf算法的Java代码:</h4>
<pre class="brush:java;">javaCopy code
public class LeafGenerator {
private static final Logger logger = LoggerFactory.getLogger(LeafGenerator.class);
private static final String WORKER_ID_KEY = "leaf.worker.id";
private static final String PORT_KEY = "leaf.port";
private static final int DEFAULT_PORT = 8080;
private static final int DEFAULT_WORKER_ID = 0;
private static final int WORKER_ID_BITS = 10;
private static final int SEQUENCE_BITS = 12;
private static final int MAX_WORKER_ID = (1 MAX_WORKER_ID) {
throw new IllegalArgumentException(String.format("workerId must be between %d and %d", 0, MAX_WORKER_ID));
}
this.workerId = workerId;
this.port = port;
}
synchronized long nextId() {
long timestamp = System.currentTimeMillis();
if (timestamp
<p>Leaf算法的特点是生成ID的速度比Snowflake算法略慢,但是可以支持更多的Worker节点。Leaf算法生成的ID由三部分组成,分别是时间戳、Worker ID和序列号,其中时间戳占用42位、Worker ID占用10位、序列号占用12位,总共64位。</p>
<p>以上是常见的分布式ID生成算法,当然还有其他的一些方案,如:MongoDB ID、UUID、Twitter Snowflake等。不同的方案适用于不同的业务场景,具体实现细节和性能表现也有所不同,需要根据实际情况选择合适的方案。</p>
<p>除了上述介绍的分布式ID生成算法,还有一些新的分布式ID生成方案不断涌现,例如Flicker的分布式ID生成算法,它使用了类似于Snowflake的思想,但是采用了不同的位数分配方式,相比Snowflake更加灵活,并且可以根据需要动态调整每个部分占用的位数。此外,Facebook还推出了ID Generation Service (IGS)方案,该方案将ID的生成和存储分离,提供了更加灵活和可扩展的方案,但是需要进行更加复杂的架构设计和实现。</p>
<p>针对不同的业务需求,可以设计多套分布式ID生成方案。下面是我个人的一些建议:</p>
- 基于数据库自增ID生成:使用数据库自增ID作为全局唯一ID,可以很好的保证ID的唯一性,并且实现简单,但是并发量较高时可能会导致性能瓶颈。因此,在高并发场景下不建议使用。
- 基于UUID生成:使用UUID作为全局唯一ID,可以很好地保证ID的唯一性,但是ID长度较长(128位),不便于存储和传输,并且存在重复ID的概率非常小但不为0。因此,建议在分布式系统中使用时要考虑ID的长度和存储传输的成本。
- 基于Redis生成:使用Redis的原子性操作,可以保证ID的唯一性,并且生成ID的速度非常快,可以适用于高并发场景。但是需要注意,如果Redis宕机或者性能不足,可能会影响ID的生成效率和可用性。
- 基于ZooKeeper生成:使用ZooKeeper的序列号生成器,可以保证ID的唯一性,并且实现较为简单,但是需要引入额外的依赖和资源,并且可能会存在性能瓶颈。
选择适合自己业务场景的分布式ID生成方案,需要综合考虑ID的唯一性、生成速度、长度、存储成本、可扩展性、可用性等多个因素。同时需要注意,不同方案的实现细节和性能表现也有所不同,需要根据实际情况进行权衡和选择。
下面给出每种方案的详细代码demo:
基于数据库自增ID生成
javaCopy code
public class IdGenerator {
private static final String JDBC_URL = "jdbc:mysql://localhost:3306/test";
private static final String JDBC_USER = "root";
private static final String JDBC_PASSWORD = "password";
public long generateId() {
Connection conn = null;
PreparedStatement pstmt = null;
ResultSet rs = null;
try {
Class.forName("com.mysql.jdbc.Driver");
conn = DriverManager.getConnection(JDBC_URL, JDBC_USER, JDBC_PASSWORD);
pstmt = conn.prepareStatement("INSERT INTO id_generator (stub) VALUES (null)", Statement.RETURN_GENERATED_KEYS);
pstmt.executeUpdate();
rs = pstmt.getGeneratedKeys();
if (rs.next()) {
return rs.getLong(1);
}
} catch (Exception e) {
e.printStackTrace();
} finally {
try {
if (rs != null) {
rs.close();
}
if (pstmt != null) {
pstmt.close();
}
if (conn != null) {
conn.close();
}
} catch (Exception e) {
e.printStackTrace();
}
}
return 0L;
}
}
基于UUID生成
javaCopy code
import java.util.UUID;
public class IdGenerator {
public String generateId() {
return UUID.randomUUID().toString().replace("-", "");
}
}
基于Redis生成
javaCopy code
import redis.clients.jedis.Jedis;
public class IdGenerator {
private static final String REDIS_HOST = "localhost";
private static final int REDIS_PORT = 6379;
private static final String REDIS_PASSWORD = "password";
private static final int ID_GENERATOR_EXPIRE_SECONDS = 3600;
private static final String ID_GENERATOR_KEY = "id_generator";
public long generateId() {
Jedis jedis = null;
try {
jedis = new Jedis(REDIS_HOST, REDIS_PORT);
jedis.auth(REDIS_PASSWORD);
long id = jedis.incr(ID_GENERATOR_KEY);
jedis.expire(ID_GENERATOR_KEY, ID_GENERATOR_EXPIRE_SECONDS);
return id;
} catch (Exception e) {
e.printStackTrace();
} finally {
if (jedis != null) {
jedis.close();
}
}
return 0L;
}
}
基于ZooKeeper生成
javaCopy code
import java.util.concurrent.CountDownLatch;
import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooDefs.Ids;
import org.apache.zookeeper.ZooKeeper;
public class IdGenerator implements Watcher {
private static final String ZK_HOST = "localhost";
private static final int ZK_PORT = 2181;
private static final int SESSION_TIMEOUT = 5000;
private static final String ID_GENERATOR_NODE = "/id_generator";
private static final int ID_GENERATOR_EXPIRE_SECONDS = 3600;
private long workerId = 0;
public IdGenerator() {
try {
ZooKeeper zk = new ZooKeeper(ZK_HOST + ":" + ZK_PORT, SESSION_TIMEOUT, this);
CountDownLatch latch = new CountDownLatch(1);
latch.await();
if (zk.exists(ID_GENERATOR_NODE, false) == null) {
zk.create(ID_GENERATOR_NODE, null, Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
}
workerId = zk.getChildren(ID_GENERATOR_NODE, false).size();
zk.create(ID_GENERATOR_NODE + "/worker_" + workerId, null, Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
} catch (Exception e) {
e.printStackTrace();
}
}
public long generateId() {
ZooKeeper zk = null;
try {
zk = new ZooKeeper(ZK_HOST + ":" + ZK_PORT, SESSION_TIMEOUT, null);
CountDownLatch latch = new CountDownLatch(1);
latch.await();
zk.create(ID_GENERATOR_NODE + "/id_", null, Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL, (rc, path, ctx, name) -> {}, null);
byte[] data = zk.getData(ID_GENERATOR_NODE + "/worker_" + workerId, false, null);
long id = Long.parseLong(new String(data)) * 10000 + zk.getChildren(ID_GENERATOR_NODE, false).size();
return id;
} catch (Exception e) {
e.printStackTrace();
} finally {
if (zk != null) {
try {
zk.close();
} catch (Exception e) {
e.printStackTrace();
}
}
}
return 0L;
}
@Override
public void process(WatchedEvent event) {
if (event.getState() == Event.KeeperState.SyncConnected) {
System.out.println("Connected to ZooKeeper");
CountDownLatch latch = new CountDownLatch(1);
latch.countDown();
}
}
}
注意,这里使用了ZooKeeper的临时节点来协调各个工作节点,如果一个工作节点挂掉了,它的临时节点也会被删除,这样可以保证每个工作节点获得的ID是唯一的。
以上就是《redis分布式ID解决方案示例详解》的详细内容,更多关于redis的资料请关注golang学习网公众号!
版本声明
本文转载于:脚本之家 如有侵犯,请联系study_golang@163.com删除
利用ChatGPT编写一个Golang图像压缩函数
- 上一篇
- 利用ChatGPT编写一个Golang图像压缩函数
- 下一篇
- 一文详解如何使用Golang处理文件
查看更多
最新文章
-
- 数据库 · Redis | 13小时前 |
- 监控Redis集群健康状态的工具与指标
- 112浏览 收藏
-
- 数据库 · Redis | 1星期前 |
- Redis数据安全防护全攻略
- 252浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- Redis主从复制故障排查与修复技巧
- 302浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- Redis与HBase存储方案详解
- 325浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- Redis数据安全防护全攻略
- 157浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- 高并发Redis优化技巧分享
- 257浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- Redis数据安全防护全攻略
- 398浏览 收藏
-
- 数据库 · Redis | 3星期前 |
- Redis配置加密方法与安全设置
- 232浏览 收藏
-
- 数据库 · Redis | 3星期前 |
- RedisHyperLogLog高效统计技巧
- 283浏览 收藏
-
- 数据库 · Redis | 3星期前 |
- Redis与MySQL缓存同步方法详解
- 141浏览 收藏
-
- 数据库 · Redis | 3星期前 |
- Redis布隆过滤器防穿透原理解析
- 312浏览 收藏
-
- 数据库 · Redis | 1个月前 |
- Redis容器化部署实战技巧分享
- 195浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
查看更多
AI推荐
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3166次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3379次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3408次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4512次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3788次使用
查看更多
相关文章
-
- 汇总Redis Cluster迁移遇到的运维问题(附解决方案)
- 2023-02-16 124浏览

