当前位置:首页 > 文章列表 > 数据库 > Redis > Redis中 HyperLogLog数据类型使用小结

Redis中 HyperLogLog数据类型使用小结

来源:脚本之家 2023-05-12 16:37:38 0浏览 收藏

一分耕耘,一分收获!既然打开了这篇文章《Redis中 HyperLogLog数据类型使用小结》,就坚持看下去吧!文中内容包含数据类型、RedisHyperLogLog等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!

1. HyperLogLog 的原理

  Redis HyperLogLog基于一种称为HyperLogLog算法的概率性算法来估计基数。 HyperLogLog使用一个长度为m的位数组和一些hash函数来估计集合中的唯一元素数。

在 HyperLogLog 算法中,对每个元素进行哈希处理,把哈希值转换为二进制后,根据二进制串前缀中 1 的个数来给每个元素打分。例如,一个元素的哈希值为01110100011,那么前缀中1的个数是3,因此在 HyperLogLog 算法中,这个元素的分数为3。

  当所有元素的分数统计完之后,取每一个分数的倒数(1 / 2^n),然后将这些倒数相加后取倒数,就得到一个基数估计值,这个值就是HyperLogLog算法的估计结果。

  HyperLogLog算法通过对位数组的长度m的大小进行取舍,折衷数据结构占用的内存与估计值的精准度(即估计误差),得到了在数据占用空间与错误较小程度之间完美的平衡。

  简而言之,HyperLogLog算法的核心思想是基于哈希函数和位运算,通过将哈希值转换成比特流并统计前导0的个数,从而快速估算大型数据集中唯一值的数量。通过 hyperloglog 算法我们可以在非常大的数据集中进行极速的网页浏览器去重。

2.使用步骤:

  Redis HyperLogLog是一种可用于估算集合中元素数量的数据结构,它能够通过使用非常少的内存来维护海量的数据。它的精确度要比使用一般的估计算法高,并且在处理大量数据时的速度也非常快。

  一个简单的例子,我们可以用HyperLogLog来计算访问网站的独立IP数,具体可以按以下步骤操作:

  • 首先创建一个HyperLogLog数据结构:  PFADD hll:unique_ips 127.0.0.1
  • 为每次访问ip添加到unique_ips数据结构中: PFADD hll:unique_ips 192.168.1.1
  • 获取计算集合中元素数量的近似值: PFCOUNT hll:unique_ips
  • 可以通过对多个HyperLogLog结构(例如按天或按小时)的合并,来获得更精确的计数。

  需要注意的是,HyperLogLog虽然可以节省大量的内存,但它是一种估计算法,误差范围并不是完全精确的,实际使用时应注意其适用范围。

3.实现请求ip去重的浏览量使用示例

4.Jedis客户端使用

  1. 添加依赖,引入jedis依赖:

<dependency><groupid>redis.clients</groupid><artifactid>jedis</artifactid><version>3.6.0</version></dependency>

  2.创建一个Jedis对象:

Jedis jedis = new Jedis("localhost");

  3.向HyperLogLog数据结构添加元素:

jedis.pfadd("hll:unique_ips", "127.0.0.1");

  4.获取计算集合中元素数量的近似值:

Long count = jedis.pfcount("hll:unique_ips");
System.out.println(count);

  5.可以通过对多个HyperLogLog结构的合并来获得更精确的计数。在Jedis中可以使用PFMERGE命令来合并HyperLogLog数据结构:

jedis.pfmerge("hll:unique_ips", "hll:unique_ips1", "hll:unique_ips2", "hll:unique_ips3");

5.Redission使用依赖

  1.创建RedissonClient对象

Config config = new Config();
config.useSingleServer().setAddress("redis://localhost:6379");
RedissonClient redisson = Redisson.create(config);

  2.创建RHyperLogLog对象

RHyperLogLog<string> uniqueIps = redisson.getHyperLogLog("hll:unique_ips");</string>

  3.添加元素

uniqueIps.add("127.0.0.1");

  4..获取近似数量

long approximateCount = uniqueIps.count();
System.out.println(approximateCount);

  5.合并多个HyperLogLog对象

RHyperLogLog<string> uniqueIps1 = redisson.getHyperLogLog("hll:unique_ips1");
RHyperLogLog<string> uniqueIps2 = redisson.getHyperLogLog("hll:unique_ips2");
uniqueIps.mergeWith(uniqueIps1, uniqueIps2);</string></string>

6.HyperLogLog 提供了哪些特性和方法

  特性:

  • 精确度低,但占用内存极少。
  • 支持插入新元素,同时不会重复计数。
  • 提供指令来优化内存使用和计数准确性。例如PFADD、PFCOUNT、PFMERGE等指令。
  • 能够估计一个数据集中的不同元素数量,即集合的基数(cardinality)。
  • 支持对多个HyperLogLog对象进行合并操作,以获得这些集合的总基数的近似值。

  HyperLogLog常用的方法:

  • PFADD key element [element ...]:添加一个或多个元素到HyperLogLog结构中。
  • PFCOUNT key [key ...]:获取一个或多个HyperLogLog结构的基数估计值。
  • PFMERGE destkey sourcekey [sourcekey ...]:合并一个或多个HyperLogLog结构到一个目标结构中。
  • PFSELFTEST [numtests]: 测试HyperLogLog估值性能和准确性(仅限Redis4.0+版本)

  需要注意的是,HyperLogLog虽然可以节省大量内存,但仍然是一种估计算法,误差范围并不是完全精确的,并且具有一定的计算成本。在使用时需要根据实际应用情况选择是否使用HyperLogLog或其他数据结构来估计元素数量。

7.使用场景总结:

  Redis使用HyperLogLog的主要作用是在大数据流(view,IP,城市)的情况下进行去重计数。

  具体来说,以下是Redis HyperLogLog用于去重计数的一些场景:

  • 统计页面访问量 - 在Web应用程序中, HyperLogLog可以使用为每个页面计算多少次独特的访问者。通过跨越多个不同的时间段使用HyperLogLog,可以计算出这个页面的所有时间的平均访问数。
  • 统计用户数 - 在分析大数据集合的用户数量方面,HyperLogLog也非常有用。作为一种基于概率的数据结构,尤其是在处理独特的用户ID这样的数据集合时。在此情况下,HyperLogLog首先执行散列,此后仅在内部存储有限的散列值,同时还能够推断大小。
  • 统计广告点击量 - 对于网站或应用程序的广告分析,HyperLogLog可以用于捕获有效点击数量,即非重复或唯一点击数量。

总之,对于需要进行去重计数的大数据流的情况下,Redis的HyperLogLog是一种简单而强大的工具。

理论要掌握,实操不能落!以上关于《Redis中 HyperLogLog数据类型使用小结》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

版本声明
本文转载于:脚本之家 如有侵犯,请联系study_golang@163.com删除
一文带你掌握掌握Golang结构体与方法一文带你掌握掌握Golang结构体与方法
上一篇
一文带你掌握掌握Golang结构体与方法
利用ChatGPT编写一个Golang图像压缩函数
下一篇
利用ChatGPT编写一个Golang图像压缩函数
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    88次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    83次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    96次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    90次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    87次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码