当前位置:首页 > 文章列表 > 文章 > python教程 > PythonShiny生成Matplotlib直方图教程

PythonShiny生成Matplotlib直方图教程

2025-11-14 14:48:37 0浏览 收藏

文章小白一枚,正在不断学习积累知识,现将学习到的知识记录一下,也是将我的所得分享给大家!而今天这篇文章《Python Shiny 绘制 Matplotlib 直方图教程》带大家来了解一下##content_title##,希望对大家的知识积累有所帮助,从而弥补自己的不足,助力实战开发!


如何在 Python Shiny 中绘制 Matplotlib 直方图

本文详细介绍了在 Python Shiny 应用中正确渲染 Matplotlib 直方图的方法。核心在于理解 `render.plot` 如何处理 Matplotlib 对象的返回机制。我们探讨了两种有效的解决方案:通过隐式捕获当前 Matplotlib 图形或显式返回 `plt.hist()` 产生的图形艺术家集合,并提供了完整的代码示例和最佳实践建议,帮助开发者避免常见错误并高效地在 Shiny 中展示数据可视化。

引言

Python Shiny 提供了一个强大的框架,用于构建交互式 Web 应用程序。结合 Matplotlib 这样的流行绘图库,开发者可以轻松地在 Shiny 应用中展示复杂的数据可视化。然而,对于初学者来说,在 Shiny 中集成 Matplotlib 图形时可能会遇到一些挑战,尤其是在处理像直方图这类返回特定元组而非直接图形对象的函数时。本文将深入探讨如何在 Python Shiny 中正确绘制 Matplotlib 直方图,并提供两种解决方案。

理解问题:为什么直接返回 plt.hist() 会出错?

在 Matplotlib 中,plt.scatter() 等函数通常会直接在当前活动的 Axes 上绘制图形,并且 render.plot 能够很好地捕获这些操作。然而,plt.hist() 函数的行为略有不同。它不仅绘制直方图,还会返回一个包含三个元素的元组:

  1. n: 直方图每个 bin 的计数。
  2. bins: bin 的边界。
  3. patches: 构成直方图的矩形(bar)的 Matplotlib Patch 对象集合。

当尝试直接 return plt.hist(random_data()) 时,render.plot 接收到的是这个元组,而不是一个可以直接渲染的 Matplotlib Figure 或 Axes 对象,因此会导致渲染失败或错误。

解决方案一:隐式捕获当前 Matplotlib 图形(推荐)

这是最简洁且推荐的方法,尤其适用于简单的绘图场景。@render.plot 装饰器具有一个特性:如果被装饰的函数没有明确返回任何 Matplotlib 对象(如 Figure 或 Axes),它会自动尝试捕获当前活动的 Matplotlib 图形并进行渲染。这意味着我们只需要调用 plt.hist() 来绘制图形,而无需返回其结果。

示例代码:

import matplotlib.pyplot as plt
import numpy as np
from shiny import App, ui, reactive, render

# ... (app_ui 部分与原代码相同) ...

def server(input, output, session):
  @reactive.Calc
  def random_data():
    return np.random.rand(input.nr_of_observations())

  @output
  @render.plot
  def my_scatter():
    # plt.scatter() 隐式地在当前 Axes 上绘制
    plt.scatter(random_data(), random_data())
    # 无需返回任何内容,render.plot 会捕获当前图形

  @output
  @render.plot
  def my_histogram():
    # 只需调用 plt.hist() 进行绘制,无需返回其结果
    plt.hist(random_data())
    # render.plot 会自动捕获当前 Matplotlib 图形并渲染

  @output
  @render.text
  def my_summary():
    return str(random_data()) # 将 numpy 数组转换为字符串以便显示

app = App(app_ui, server)

工作原理: 当 my_histogram 函数被调用时,plt.hist(random_data()) 会在 Matplotlib 的当前活动 Figure 和 Axes 上绘制直方图。由于函数没有显式返回任何值,@render.plot 会检测到这一点,并自动获取当前活动的 Matplotlib Figure 对象,然后将其渲染到 Shiny UI 中。

解决方案二:返回特定的 Matplotlib 艺术家集合

虽然不如第一种方法通用,但这种方法也能够解决问题。它利用了 plt.hist() 返回元组中的第三个元素 patches,这是一个 BarContainer 对象,包含构成直方图的所有矩形(bar)的 Matplotlib Patch 对象集合。render.plot 有时能够直接渲染这类艺术家集合。

示例代码:

import matplotlib.pyplot as plt
import numpy as np
from shiny import App, ui, reactive, render

# ... (app_ui 部分与原代码相同) ...

def server(input, output, session):
  @reactive.Calc
  def random_data():
    return np.random.rand(input.nr_of_observations())

  @output
  @render.plot
  def my_scatter():
    plt.scatter(random_data(), random_data())

  @output
  @render.plot
  def my_histogram():
    # 返回 plt.hist() 返回元组的第三个元素 (patches)
    return plt.hist(random_data())[2]

  @output
  @render.text
  def my_summary():
    return str(random_data())

app = App(app_ui, server)

工作原理: 此方法显式地从 plt.hist() 的返回值中提取 patches 集合并将其返回。@render.plot 能够识别并渲染这些 Matplotlib 艺术家对象。虽然这种方法有效,但它对 plt.hist() 的返回值结构有特定的依赖,不如第一种方法那样通用,特别是当你需要对整个 Figure 或 Axes 进行更复杂的控制时。

完整的 Shiny 应用示例

为了提供一个完整的上下文,以下是使用推荐的第一种解决方案的完整 Shiny 应用代码:

from shiny import App, ui, reactive, render
import numpy as np
import matplotlib.pyplot as plt

# 定义 UI 布局
app_ui = ui.page_fluid(
    ui.panel_title("My Shiny Test Application"),
    ui.layout_sidebar(
      ui.panel_sidebar(
        ui.input_slider(
          "nr_of_observations", 
          "Number of observations",
          min = 0,
          max = 100,
          value = 30
        )
      ),
      ui.panel_main(
        ui.navset_tab(
          ui.nav(
            "Scatter",
            ui.output_plot("my_scatter")
          ),
          ui.nav(
            "Histogram",
            ui.output_plot("my_histogram")
          ),
          ui.nav(
            "Summary",
            ui.output_text_verbatim("my_summary"),
          )
        )
      )
    )
  )

# 定义服务器逻辑
def server(input, output, session):
  # 响应式计算,生成随机数据
  @reactive.Calc
  def random_data():
    return np.random.rand(input.nr_of_observations())

  # 渲染散点图
  @output
  @render.plot
  def my_scatter():
    # 直接调用 Matplotlib 绘图函数,render.plot 会自动捕获当前图形
    plt.scatter(random_data(), random_data())

  # 渲染直方图
  @output
  @render.plot
  def my_histogram():
    # 直接调用 Matplotlib 绘图函数,render.plot 会自动捕获当前图形
    plt.hist(random_data())

  # 渲染摘要文本
  @output
  @render.text
  def my_summary():
    # 将 numpy 数组转换为字符串以便在文本输出中显示
    return str(random_data())

# 创建 Shiny 应用实例
app = App(app_ui, server)

总结与最佳实践

在 Python Shiny 中使用 Matplotlib 绘制图形时,理解 render.plot 的工作机制至关重要。

  1. 隐式捕获是首选: 对于大多数简单的 Matplotlib 绘图,如 plt.scatter() 或 plt.hist(),最简洁且推荐的方法是直接调用绘图函数,而不要从 render.plot 装饰的函数中返回任何内容。render.plot 会自动捕获当前活动的 Matplotlib Figure 对象并进行渲染。
  2. 显式创建和返回 Figure: 对于更复杂的场景,例如在同一个输出中绘制多个子图,或者需要对 Figure 和 Axes 对象进行精细控制时,最佳实践是显式地创建 Matplotlib Figure 和 Axes 对象,然后将 Figure 对象返回。例如:
    @output
    @render.plot
    def my_complex_plot():
        fig, ax = plt.subplots()
        ax.hist(random_data())
        ax.set_title("My Custom Histogram")
        return fig # 显式返回 Figure 对象
  3. 清理 Matplotlib 状态: 尽管 Shiny 的 render.plot 通常能很好地管理图形状态,但在某些复杂情况下,手动清理 Matplotlib 的全局状态(例如 plt.clf() 或 plt.close())可能有助于避免意外行为,尤其是在显式创建 Figure 时。

通过遵循这些指南,您将能够有效地在 Python Shiny 应用中集成和展示各种 Matplotlib 图形,为用户提供丰富的数据可视化体验。更多详细信息和高级用法,请参考 Shiny for Python 的官方文档。

到这里,我们也就讲完了《PythonShiny生成Matplotlib直方图教程》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于的知识点!

12306电子发票可开个人抬头吗12306电子发票可开个人抬头吗
上一篇
12306电子发票可开个人抬头吗
晋江APP海外收不到验证码怎么办
下一篇
晋江APP海外收不到验证码怎么办
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3180次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3391次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3420次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4526次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3800次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码