MySQL之索引结构解读
怎么入门数据库编程?需要学习哪些知识点?这是新手们刚接触编程时常见的问题;下面golang学习网就来给大家整理分享一些知识点,希望能够给初学者一些帮助。本篇文章就来介绍《MySQL之索引结构解读》,涉及到结构、Mysql索引,有需要的可以收藏一下
MySQL索引是什么
MySQL索引就是帮助MySQL高效获取数据的数据结构。
这个数据结构也就是我们常说的二叉树、红黑树、Hash表等索引数据结构,借助这样的数据结构,相较于之前的全局遍历查询,能够更高效的进行查询。
简单复习一下一些常见的索引数据结构:
二叉树
上图是一个二叉树,他根据我们存放数据的顺序依次填充这个树结构,比根节点小的数放到左边,比根节点大的放在右边,这样我们去查找的时候不需要遍历所有数据,只需要依次与根节点以及下面的子节点对比就可以查找到我们要找的元素。
查找流程示例图:
根据这个动态图左上角的比对信息,可以很清楚的看到二叉树的查询逻辑,感兴趣的可以去这个网址实际模拟下:Data Structure Visualization
但是上述查询逻辑是在数据无大小规律存储的情况下进行查询的,如果我们的数据按照大小顺序存储会出现以下情况:这其实虽然叫二叉树但实际上已经是链表结构了,假如我们要查询较为底层的数据,还是要遍历全局。
MySQL底层不是使用的二叉树结构。
红黑树
相较于上述的二叉树,红黑树做了相应的优化,他会根据存储的数据动态调整根节点保证树左右两边的平衡,红黑树也是一种平衡树。
下面来动态的看下他是如何存储数据的:
可以明显的看到他动态调整树的结构,其实也就是减少了树的深度,相较于上面变为链式的二叉树,他的效率还是较高的,但是这仅仅适用于数据量不是很大的情况,如果数据量百万甚至千万,这个树的深度一样很深,查询起来效率依旧不高。所以MySQL底层也不是使用的红黑树结构。
那MySQL使用的那种数据结构来存储索引数据的呢?
B+Tree
MySQL底层其实是使用的B+Tree的数据结构存储的
这个结构相对于上述两种结构都有点复杂了,用更详细一点的图来表达可以这么看,他实际上还是树,但是一个树节点上不只有一个索引数据,只有最底层的叶子节点上才有数据(这个数据就是我们mysql表中的一列数据或者是mysql数据对应的磁盘地址),而其他节点只存储索引,也叫作冗余索引。
这样的索引结构有什么好处呢?
在我们创建数据库索引的时候,他会自动帮我们建立这样的B+Tree数据结构,上图假如我们要查询30那条数据(select * from table where column = 30),这个column就是我们创建索引的那一列,这样他会把根节点加载到内存中,根据二分法或者其他方式查找到30对应的区间地址,因为在内存中的查找运算要比查询磁盘要快的多
然后相应的再往下找到30所在的区间位置,遍历最后一个叶子节点就可以获取到30那条数据
那如果数据量过大,百万千万,树还会不会变得很深?
我们说树的查询效率取决于树的深度,那这个在千万级数据量下会不会还有二叉树和红黑树一样的问题呢?
其实没有了,B+Tree是可以设置树的最大深度的,我们假设深度设置为3,看看能进行多少量级的数据查询。
因为在前面的两层节点中只存储了索引数据和子节点的磁盘位置,大大节省了存储空间,每个节点的存储大小是由mysql设置的分页参数决定的:一般是16kb
ps:页是InnoDB访问的最小单位,默认16KB。缓冲池是以页为管理单位,每次读取或刷新一页数据。参数: innodb_page_size,可以将页大小设置为4K,8K.
SHOW GLOBAL STATUS LIKE 'Innodb_page_size';
而一个索引数据假设我们用的bigInt占用8个字节,两个索引元素之间的空间是下个节点的磁盘空间地址,占用6个字节,也就是一个索引+节点地址占用14b,那么16kb的空间可以存储数据量是1170个索引,同理第二个层级的每个节点是也是可以存储1170个索引,最后一层也就是第三层的节点因为存储的是实际每一列的数据,假设每列数据占用1kb,那每个节点占存储16个索引数据。
整个树的数据存储量为1170*1170*16=21,902,400,是个两千万量级的数据量。完全满足大数据量的需求。
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持golang学习网。
文中关于mysql的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《MySQL之索引结构解读》文章吧,也可关注golang学习网公众号了解相关技术文章。

- 上一篇
- MySQL主备操作以及原理详解

- 下一篇
- 浅谈一下MyISAM和InnoDB存储引擎的区别
-
- 数据库 · MySQL | 3小时前 |
- 如何检测电脑是否安装MySQL的5种方法
- 278浏览 收藏
-
- 数据库 · MySQL | 4小时前 |
- MySQL分区表查询优化技巧
- 126浏览 收藏
-
- 数据库 · MySQL | 6小时前 |
- MySQL建库语句与字符集设置教程
- 414浏览 收藏
-
- 数据库 · MySQL | 1天前 |
- MySQL中AS别名用法详解
- 320浏览 收藏
-
- 数据库 · MySQL | 1天前 |
- MySQL创建带主键的表实例
- 247浏览 收藏
-
- 数据库 · MySQL | 2天前 |
- 主外键关系怎么建立?
- 149浏览 收藏
-
- 数据库 · MySQL | 2天前 |
- MySQL中IF函数使用详解
- 392浏览 收藏
-
- 数据库 · MySQL | 3天前 |
- MySQL中IF函数使用详解
- 268浏览 收藏
-
- 数据库 · MySQL | 3天前 |
- MySQL入门:核心概念与操作全解析
- 162浏览 收藏
-
- 数据库 · MySQL | 3天前 |
- MySQL事务是什么?如何保证数据一致性?
- 349浏览 收藏
-
- 数据库 · MySQL | 3天前 |
- MySQL数据分片实现方法及常见方案解析
- 363浏览 收藏
-
- 数据库 · MySQL | 4天前 |
- MySQL基础:增删改查全教程
- 345浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 514次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- AI Mermaid流程图
- SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
- 635次使用
-
- 搜获客【笔记生成器】
- 搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
- 642次使用
-
- iTerms
- iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
- 657次使用
-
- TokenPony
- TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
- 726次使用
-
- 迅捷AIPPT
- 迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
- 621次使用
-
- 可能是最贴心的MySQL笔记了
- 2023-02-24 368浏览
-
- MySQL8.0 索引优化invisible index详情
- 2023-01-07 309浏览
-
- go语言数据结构之前缀树Trie
- 2023-01-02 226浏览
-
- Go 数据结构之二叉树详情
- 2022-12-23 154浏览
-
- 聊聊Golang的语言结构和变量问题
- 2022-12-23 436浏览