当前位置:首页 > 文章列表 > 文章 > python教程 > 多进程vs多线程,Python怎么选?

多进程vs多线程,Python怎么选?

2025-11-12 13:35:55 0浏览 收藏

本篇文章给大家分享《多进程还是多线程?Python选择指南》,覆盖了文章的常见基础知识,其实一个语言的全部知识点一篇文章是不可能说完的,但希望通过这些问题,让读者对自己的掌握程度有一定的认识(B 数),从而弥补自己的不足,更好的掌握它。

CPU密集型任务应选多进程,因GIL限制多线程无法并行计算;I/O密集型任务宜用多线程,因等待期间可释放GIL实现高效并发。

Python中的多进程与多线程如何选择?

在Python中决定使用多进程还是多线程,关键在于你的任务类型:是CPU密集型还是I/O密集型。如果你的程序大部分时间都在进行计算,那多进程几乎是唯一能真正利用多核CPU的途径;而如果你的程序大部分时间都在等待外部资源(比如网络请求、文件读写),那么多线程通常能提供更好的并发表现。

解决方案

坦白说,这选择背后最核心的考量,就是Python那个让人又爱又恨的全局解释器锁(GIL)。它像一个守门员,确保同一时刻只有一个线程能执行Python字节码。这意味着,即使你有八核CPU,纯粹的Python多线程也无法让你的CPU密集型任务跑得更快,因为它们依然需要轮流进入GIL才能执行。这听起来有点沮丧,对吧?

所以,对于那些需要大量数学运算、图像处理、数据分析等CPU密集型任务,多进程(multiprocessing模块)是绕开GIL限制的有效手段。每个进程都有自己独立的Python解释器和内存空间,互不干扰,自然也就没有GIL的束缚。你可以将任务分解成多个子任务,让不同的进程并行处理,从而真正发挥多核CPU的威力。我个人在处理大规模数据处理时,几乎都会优先考虑multiprocessing.Pool,它用起来非常方便,能有效地将任务分发给多个工作进程。

然而,当你的程序大部分时间都在等待外部操作完成时,比如从网络下载数据、等待数据库响应、或者读写磁盘文件,这时候多线程(threading模块)就有了用武之地。在等待I/O操作完成的这段时间里,Python解释器会释放GIL,允许其他线程运行。这样,一个线程在等待网络响应时,另一个线程可以去处理用户界面事件,或者发起另一个网络请求。这并不能加快单个I/O操作的速度,但它能让你在等待一个任务的同时,启动或处理其他任务,从而提高程序的整体吞吐量和响应速度。想象一下,你一边等咖啡机出咖啡,一边可以回复邮件,这就是I/O密集型多线程的魅力。

选择的逻辑其实很简单:如果你的代码会“忙碌地计算”,就用多进程;如果你的代码会“空闲地等待”,就用多线程。当然,这只是一个粗略的划分,实际情况往往更复杂,可能需要混合使用,甚至考虑异步编程(asyncio)这种更高级的并发模型。

Python全局解释器锁(GIL)究竟带来了哪些限制?

GIL,全称Global Interpreter Lock,是Python解释器(特指Cpython)的一个机制,它确保在任何给定时刻,只有一个线程能够执行Python字节码。这听起来可能有点反直觉,尤其是在多核处理器普及的今天。但它的存在有其历史原因,主要是为了简化Cpython内部的内存管理和避免复杂的死锁问题。

那么,它具体带来了什么限制呢?最直接的影响就是,它使得Python的多线程在CPU密集型任务上无法实现真正的并行。无论你有多少个核心,你的Python程序在执行纯计算任务时,都只能在一个核心上“单线程”地跑。其他线程必须等待GIL的释放才能轮流执行。这就像在一个只有一条单行道的厨房里,即使有多个厨师,他们也只能排队使用炉灶,无法同时炒菜。这无疑是Python在高性能计算领域被诟病的一个主要原因。

不过,GIL并非一无是处。它简化了Cpython的实现,让垃圾回收机制和内存管理变得更容易,也避免了C扩展开发者在编写线程安全代码时面临的巨大挑战。可以说,GIL是Cpython设计权衡下的产物。理解了GIL,你就能明白为什么在Python中,多线程并不意味着“更快”的计算,而更多的是“更高效”的等待。

哪些场景下,多进程是Python并发的首选?

当你的Python程序需要榨干CPU的每一滴性能时,多进程无疑是首选。我个人遇到过很多这样的场景,比如:

  • 科学计算与数值分析: 大规模矩阵运算、蒙特卡洛模拟、信号处理等。这些任务通常涉及复杂的数学计算,可以很容易地分解成独立的子任务,让不同的进程并行处理。
  • 图像与视频处理: 对大量图片进行滤镜、缩放、特征提取,或者对视频帧进行逐帧处理。每个图片或视频帧的处理通常是独立的,非常适合多进程。
  • 数据并行处理: 当你有海量数据需要进行相同的转换或分析时,比如日志分析、文本挖掘。你可以将数据集切分成若干块,每个进程处理一块数据。
  • Web服务器的并发请求处理: 像Gunicorn、uWSGI这样的WSGI服务器,就是通过启动多个Python进程来处理并发的HTTP请求,每个进程都有自己的GIL,互不影响,从而提升了Web应用的吞吐量。

使用multiprocessing模块时,你通常会创建Process对象或者使用PoolPool尤其方便,它提供了一个进程池,你可以把任务提交给它,它会自动管理进程的创建、销毁和任务分发,极大简化了并行编程的复杂度。当然,进程间通信(IPC)会引入一些开销,比如通过队列(Queue)或管道(Pipe)传递数据,但对于CPU密集型任务来说,这种开销通常是值得的。

Python多线程在实际开发中还有用武之地吗?

当然有!尽管GIL限制了Python多线程在CPU密集型任务上的表现,但在I/O密集型任务中,它依然是提高程序响应性和吞吐量的利器。很多时候,我们编写的程序并不是纯粹的计算,而是需要频繁地与外部世界打交道。

  • 网络爬虫: 当你需要从多个网站或API获取数据时,多线程可以让你同时发起多个HTTP请求。一个线程在等待某个网站响应时,其他线程可以去请求另一个网站,大大缩短了总体的等待时间。
  • GUI应用: 在桌面应用中,如果你有一个耗时的操作(比如文件压缩或网络下载),将其放在一个单独的线程中执行,可以避免主线程(UI线程)被阻塞,从而保持界面的响应性,用户就不会觉得程序“卡死”了。
  • 文件操作: 当需要处理大量小文件,或者从多个文件并行读取数据时,多线程也能发挥作用。比如,同时从不同的磁盘位置读取数据,或者在读取一个文件的同时,处理另一个文件的内容。
  • 异步I/O的补充: 即使有了asyncio这样的异步框架,在某些需要阻塞式库或无法轻易转换为异步模式的场景下,多线程仍然是一个实用的选择。你可以将阻塞操作封装在一个线程中,然后通过队列将结果传递给主线程或asyncio事件循环。

需要注意的是,多线程编程最大的挑战往往是共享数据和同步问题。多个线程访问同一个变量或资源时,如果没有正确地使用锁(Lock)、信号量(Semaphore)等同步原语,很容易出现竞态条件(Race Condition)和数据不一致的问题。这就像多个厨师在同一个厨房里,如果没有明确分工和沟通机制,很容易抢用同一个调料或者把菜炒糊。所以,在使用多线程时,务必仔细考虑线程安全。

以上就是《多进程vs多线程,Python怎么选?》的详细内容,更多关于Python,多进程,多线程,gil,任务类型的资料请关注golang学习网公众号!

B站直播收益怎么算?主播收入解析B站直播收益怎么算?主播收入解析
上一篇
B站直播收益怎么算?主播收入解析
pxemremvwvh区别全解析
下一篇
pxemremvwvh区别全解析
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3179次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3390次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3418次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4525次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3798次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码