多元时序预测:选择独立预测还是联合预测?
本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《多元时序预测:选择独立预测还是联合预测?》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~
今天介绍一篇南大今年4月份发表的文章,主要探讨了多元时间序列预测问题中,独立预测(channel independent)和联合预测(channel dependent)二者效果的差异、背后的原因以及优化方法。
论文标题:The Capacity and Robustness Trade-off: Revisiting the Channel Independent Strategy for Multivariate Time Series Forecasting
下载地址:https://arxiv.org/pdf/2304.05206v1.pdf
1、独立预测和联合预测
多元时间序列预测问题中,从多变量建模方法的维度有两种类型,一种是独立预测(channel independent,CI),指的是把多元序列当成多个单变量预测,每个变量分别建模;另一种是联合预测(channel dependent,CD),指的是多变量一起建模,考虑各个变量之间的关系。二者的差异如下图。
这两种方式各有特点:CI方法只考虑单个变量,模型更简单,但是天花板也较低,因为没有考虑各个序列之间的关系,损失了一部分关键信息;而CD方法考虑的信息更全面,但是模型也更加复杂。
2、哪种方法更好
文中首先做了详细的对比实验,在多个数据集,观察CI方法和CD方法哪种效果更好(采用线性模型)。文中实验得到的一个核心结论是:CI方法在大多数任务上表现的更好,并且效果方差也更小。下面这张图中可以看到,CI的MAE、MSE等指标在各个数据集上基本都小于CD,同时效果的波动也更小一些。
从下面的实验结果可以看到,CI相比CD,在绝大多数预测窗口长度和数据集上,效果都是提升的。
为什么CI方法在实际应用中比CD效果更好、更稳定呢?文中进行了一些理论证明,核心的结论是:真实数据往往存在Distribution Drift,而使用CI方法有助于缓解这个问题,提升模型泛化性。下面这张图,展示了各个数据集trainset和testset的ACF(自相关系数,反映了未来序列和历史序列之间的关系)随时间变化分布,可以看到Distribution Drift在各个数据集上是广泛存在的(也就是trainset的ACF和testset的ACF不同,即两者的历史与未来序列的关系不同)。
文中通过理论证明了CI对于缓解因此Distribution Drift有效,CI和CD之间的选择,是一种模型容量和模型鲁棒性之间的权衡。CD模型更加复杂,但是也对于Distribution Drift更敏感。这其实和模型容量与模型泛化性之间的关系类似,越复杂的模型,模型拟合的训练集样本越准确,但是泛化性较差,一旦训练集和测试集分布差异较大,效果就会变差。
3、如何优化
针对CD建模的问题,文中提出了一些优化方法,可以帮助CD模型更具鲁棒性。
正则化:引入一个正则化损失,用序列减去最近的样本点作为历史序列输入模型进行预测,同时使用平滑约束预测结果,让预测结果和最近邻的观测值偏差不要太大,使得预估结果更平;
低秩分解:将全连接参数矩阵分解成两个低阶矩阵,相当于减少了模型容量,缓解过拟合问题,提升模型鲁棒性;
损失函数:采用MAE替代MSE,降低模型对于异常值的敏感度;
历史输入序列长度:对于CD模型来说,输入的历史序列越长,可能反而会造成效果的下降,也是因为历序列越长,模型越容易受到Distribution Shift的影响,而对于CI模型,增长历史序列长度可以比较稳定的提升预测效果。
4、实验效果
文中将上面提到的改进CD模型的方法在多个数据集上进行实验,相比CD取得比较稳定的效果提升,说明上述方法对于提升多元序列预测鲁棒性有比较明显的作用。此外,文中也列举了低秩分解、历史窗口长度、损失函数类型等对于效果的影响实验结果。
好了,本文到此结束,带大家了解了《多元时序预测:选择独立预测还是联合预测?》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

- 上一篇
- 为什么聊天机器人无法完全替代人类交流?

- 下一篇
- 黑科技问世:视频中人物一键消除,特效制作更便利
-
- 科技周边 · 人工智能 | 52分钟前 |
- 大众电动平台升级,2026年将采用磷酸铁锂电池
- 376浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- AI证件照如何变得更真实?
- 275浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- 东风日产N7防晕车认证“晕车党”福音
- 236浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 即梦ai水印设置及添加攻略
- 167浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 | Cybertruck 中国市场 FSD转移 北美地区 特斯拉S3XY
- 特斯拉FSD转移服务北美限时重启
- 346浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- 文心一言教你提升文案技巧大揭秘
- 215浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- PPTFake答辩PPT生成器
- PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
- 17次使用
-
- Lovart
- SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
- 15次使用
-
- 美图AI抠图
- 美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
- 29次使用
-
- PetGPT
- SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
- 30次使用
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 53次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览