将时间序列转换为分类问题
大家好,我们又见面了啊~本文《将时间序列转换为分类问题》的内容中将会涉及到等等。如果你正在学习科技周边相关知识,欢迎关注我,以后会给大家带来更多科技周边相关文章,希望我们能一起进步!下面就开始本文的正式内容~
本文将以股票交易作为示例。我们用 AI 模型预测股票第二天是涨还是跌。在此背景下,比较了分类算法 XGBoost、随机森林和逻辑分类器。文章的另外一个重点是数据准备。我们必须如何转换数据以便模型可以处理它。
在本文中,我们将遵循 CRISP-DM 流程模型,以便我们采用结构化方法来解决业务案例。CRISP-DM 特别适用于潜在分析,通常在行业中用于构建数据科学项目。
另外就是我们将使用 Python 包 openbb。这个包以包含了一些来自金融部门的数据源,我们可以方便的使用它。
首先就是安装必须的库:
<code>pip install pandas numpy “openbb[all]” swifter scikit-learn</code>
业务理解
首先应该了解我们要解决的问题, 在我们的例子中,可以将问题定义如下:
<code>预测股票代码 AAPL 的股价第二天会上涨还是下跌。</code>
然后就是应该考虑手头有什么样的机器学习模型的问题。我们想预测第二天股票是上涨还是下跌。所以这是一个分类问题(1:股票第二天上涨或 0:股票第二天下跌)。在分类问题中,我们预测一个类别。在我们的例子中,是一个 0 类和 1 类的二元分类。
数据理解和准备
数据理解阶段侧重于识别、收集和分析数据集。第一步,我们下载 Apple 股票数据。以下是如何使用 openbb 执行此操作:
<code>data = openbb.stocks.load(symbol = 'AAPL',start_date = '2023-01-01',end_date = '2023-04-01',monthly = False) data</code>
该代码下载 2023-01-01 和 2023-04-01 之间的数据。下载的数据包含以下信息:
- Open:美元每日开盘价
- High:当日最高价(美元)
- Low:当日最低价(美元)
- Close:美元每日收盘价
- Adj Close:与股息或股票分割相关的调整后收盘价
- Volume:交易的股票数量
- Dividends:已付股息
- Stock Splits:股票分割执行
我们已经下载了数据,但是数据还不适合建模分类模型。所以仍然需要为建模准备数据。所以需要编写了一个函数来下载数据,然后对其进行转换以进行建模。以下代码显示了此功能:
<code>def get_training_data(symbol, start_date, end_date, monthly_bool=True, lookback=10): data = openbb.stocks.load( symbol = symbol, start_date = start_date, end_date = end_date, monthly = monthly_bool) data = get_label(data) data_up_down = data['up_down'].to_numpy() training_data = get_sequence_data(data_up_down, lookback) return training_data</code>
这里面包含的第一个函数时get_label():
<code>def encoding(n): if n > 0: return 1 else: return 0 def get_label(data): data['Delta'] = data['Close'] - data['Open'] data['up_down'] = data['Delta'].swifter.apply(lambda d: encoding(d)) return data</code>
他的主要工作是:计算收盘价和开盘价之间的差值。然后我们用 1 标记股价上涨的所有日期,股价下跌的所有日期都标记为 0。另外的up_down列包含股票价格在特定日期是上涨还是下跌。这里使用 swifter.apply() 函数替代 pandas apply()是因为 swifter 提供多核支持。
第二个函数是get_sequence_data()。参数 lookback 指定预测中包含过去多少天。get_sequence_data()代码如下 :
<code>def get_sequence_data(data_up_down, lookback): shape = (data_up_down.shape[0] - lookback + 1, lookback) strides = data_up_down.strides + (data_up_down.strides[-1],) return np.lib.stride_tricks.as_strided(data_up_down, shape=shape, strides=strides)</code>
这个函数有两个参数:data_up_down 和 lookback。它返回一个新的 NumPy 数组,该数组表示具有指定窗口大小的 data_up_down 数组的滑动窗口视图,该窗口大小由 lookback 参数确定。为了说明这个函数是如何工作的,我们看一个小例子。
<code>get_sequence_data(np.array([1, 2, 3, 4, 5, 6]), 3)</code>
结果如下:
<code>array([[1, 2, 3],[2, 3, 4],[3, 4, 5],[4, 5, 6]])</code>
在下文中,我们下载 Apple 股票的数据并对其进行转换以进行建模。我们使用 10 天的回溯期。
<code>data = get_training_data(symbol = 'AAPL', start_date = '2023-01-01', end_date = '2023-04-01', monthly_bool = False, lookback=10) pd.DataFrame(data).to_csv("data/data_aapl.csv")</code>
数据已经准备完毕了,我们开始建模和评估模型。
建模
将数据读入数据并生成测试和训练数据。
<code>data = pandas.read_csv("./data/data_aapl.csv") X=data.iloc[:,:-1] Y=data.iloc[:,-1] X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=4284, stratify=Y)</code>
逻辑回归:
该分类器是基于线性的模型,通常用作基线模型。我们使用scikit-learn的实现:
<code>model_lr = LogisticRegression(random_state = 42) model_lr.fit(X_train,y_train) y_pred = model_lr.predict(X_test)</code>
XGBoost:
XGBoost 是为速度和性能而设计的梯度提升决策树的实现。它属于树提升算法,将许多弱树分类器依次连接。
<code>model_xgb = XGBClassifier(random_state = 42) model_xgb.fit(X_train, y_train) y_pred = model_xgb.predict(X_test)</code>
随机森林:
随机森林构建多个决策树。这种方法称为集成学习,因为多个学习器是相互连接的,该算法属于bagging方法。首字母缩写词“bagging”代表引导聚合。 这里也使用scikit-learn的实现:
<code>model_rf = RandomForestClassifier(random_state = 42) model_rf.fit(X_train, y_train) y_pred = model_rf.predict(X_test)</code>
评估
在对模型进行建模和训练之后,我们需要检查模型在测试数据上的性能。测量指标是 Recall、Precision 和 F1-Score。下表显示了结果。
可以看到逻辑分类器(逻辑回归)和随机森林取得了明显优于XGBoost模型的结果, 这是什么原因呢?这是因为数据比较简单,只有几个维度的特征,并且数据的长度也很小,我们所有的模型也没有进行调优。
总结
我们这篇文章的主要目的是介绍如何将股票价格的时间序列转换为分类问题,并且演示如何在数据处理时使用窗口函数将时间序列转换为一个序列,至于模型并没有太多的进行调优,所以对于效果评估来说越简单的模型表现得就越好。
今天带大家了解了的相关知识,希望对你有所帮助;关于科技周边的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

- 上一篇
- 大模型商业的搅局者?除了谷歌和微软,你可能忘记了它!

- 下一篇
- 谷歌内部文件泄漏:谷歌、OpenAI都没有护城河,大模型门槛正被开源踏破
-
- 科技周边 · 人工智能 | 3小时前 |
- 豆包大模型搭配AI工具设计攻略
- 245浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- Deepseek满血版联手Reedsy,电子书排版更专业
- 303浏览 收藏
-
- 科技周边 · 人工智能 | 7小时前 | 触控体验 图片裁剪 智能选择 AdobeFresco 变换工具
- AdobeFrescoAI图片裁剪教程
- 189浏览 收藏
-
- 科技周边 · 人工智能 | 7小时前 |
- 豆包联动AI旧物改造,变废为宝技巧详解
- 166浏览 收藏
-
- 科技周边 · 人工智能 | 8小时前 |
- AI证件照怎么拍更自然?
- 209浏览 收藏
-
- 科技周边 · 人工智能 | 8小时前 | 抠图 图像处理 AI裁剪 手动裁剪 PhotoFiltre
- PhotoFiltreAI裁剪技巧分享
- 204浏览 收藏
-
- 科技周边 · 人工智能 | 9小时前 | Speech-to-Text VertexAI GoogleAI 视频转文章 NaturalLanguageAPI
- GoogleAI视频转文字教程全解析
- 406浏览 收藏
-
- 科技周边 · 人工智能 | 9小时前 |
- Deepseek联手ResembleAI,打造专属语音助手
- 115浏览 收藏
-
- 科技周边 · 人工智能 | 9小时前 |
- 即梦AI如何做慢动作 视频减速技巧分享
- 119浏览 收藏
-
- 科技周边 · 人工智能 | 10小时前 |
- 豆包联动AI日程工具,高效规划攻略
- 416浏览 收藏
-
- 科技周边 · 人工智能 | 10小时前 |
- AI灯光设计工具搭配豆包的实用技巧
- 402浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 514次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- AI Mermaid流程图
- SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
- 581次使用
-
- 搜获客【笔记生成器】
- 搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
- 584次使用
-
- iTerms
- iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
- 605次使用
-
- TokenPony
- TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
- 669次使用
-
- 迅捷AIPPT
- 迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
- 568次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览