当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 一次性分割一切,比SAM更强,华人团队的通用分割模型SEEM来了

一次性分割一切,比SAM更强,华人团队的通用分割模型SEEM来了

来源:51CTO.COM 2023-05-02 09:08:33 0浏览 收藏

目前golang学习网上已经有很多关于科技周边的文章了,自己在初次阅读这些文章中,也见识到了很多学习思路;那么本文《一次性分割一切,比SAM更强,华人团队的通用分割模型SEEM来了》,也希望能帮助到大家,如果阅读完后真的对你学习科技周边有帮助,欢迎动动手指,评论留言并分享~

本月初,Meta 发布「分割一切」AI 模型 ——Segment Anything Model(SAM)。SAM 被认为是一个通用的图像分割基础模型,它学会了关于物体的一般概念,可以为任何图像或视频中的任何物体生成 mask,包括在训练过程中没有遇到过的物体和图像类型。这种「零样本迁移」的能力令人惊叹,甚至有人称 CV 领域迎来了「GPT-3 时刻」。

最近,一篇「一次性分割一切」的新论文《Segment Everything Everywhere All at Once》再次引起关注。在该论文中,来自威斯康星大学麦迪逊分校、微软、香港科技大学的几位华人研究者提出了一种基于 prompt 的新型交互模型 SEEM。SEEM 能够根据用户给出的各种模态的输入(包括文本、图像、涂鸦等等),一次性分割图像或视频中的所有内容,并识别出物体类别。该项目已经开源,并提供了试玩地址供大家体验。

一次性分割一切,比SAM更强,华人团队的通用分割模型SEEM来了

论文链接:https://arxiv.org/pdf/2304.06718.pdf

项目链接:https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once

试玩地址:https://huggingface.co/spaces/xdecoder/SEEM

该研究通过全面的实验验证了 SEEM 在各种分割任务上的有效性。即使 SEEM 不具有了解用户意图的能力,但它表现出强大的泛化能力,因为它学会了在统一的表征空间中编写不同类型的 prompt。此外,SEEM 可以通过轻量级的 prompt 解码器有效地处理多轮交互。

一次性分割一切,比SAM更强,华人团队的通用分割模型SEEM来了

先来看一下分割效果:

在变形金刚的合影中把「擎天柱」分割出来:

一次性分割一切,比SAM更强,华人团队的通用分割模型SEEM来了

还能对一类物体做分割,比如在一张景观图片中分割出所有建筑物:

一次性分割一切,比SAM更强,华人团队的通用分割模型SEEM来了

SEEM 也能轻松分割出视频中移动的物体:

一次性分割一切,比SAM更强,华人团队的通用分割模型SEEM来了

这个分割效果可以说是非常丝滑了。我们来看一下该研究提出的方法。

方法概述

该研究旨在提出一个通用接口,以借助多模态 prompt 进行图像分割。为了实现这一目标,他们提出了一种包含 4 个属性的新方案,包括多功能性(versatility)、组合性(compositionality)、交互性(interactivity)和语义感知能力(semantic-awareness),具体包括

1)多功能性该研究提出将点、掩码、文本、检测框(box)甚至是另一个图像的参考区域(referred region)这些异构的元素,编码成同一个联合视觉语义空间中的 prompt。

2)组合性通过学习视觉和文本 prompt 的联合视觉语义空间来即时编写查询以进行推理。SEEM 可以处理输入 prompt 的任意组合。

3)交互性:该研究引入了通过结合可学习的记忆(memory) prompt,并通过掩码指导的交叉注意力保留对话历史信息。

4)语义感知能力:使用文本编码器对文本查询和掩码标签进行编码,从而为所有输出分割结果提供了开放集语义。

一次性分割一切,比SAM更强,华人团队的通用分割模型SEEM来了

架构方面,SEEM 遵循一个简单的 Transformer 编码器 - 解码器架构,并额外添加了一个文本编码器。在 SEEM 中,解码过程类似于生成式 LLM,但具有多模态输入和多模态输出。所有查询都作为 prompt 反馈到解码器,图像和文本编码器用作 prompt 编码器来编码所有类型的查询。

一次性分割一切,比SAM更强,华人团队的通用分割模型SEEM来了

具体来说,该研究将所有查询(如点、框和掩码)编码为视觉 prompt,同时使用文本编码器将文本查询转换为文本 prompt,这样视觉和文本 prompt 就能保持对齐。5 种不同类型的 prompt 都能都映射到联合视觉语义空间中,通过零样本适应来处理未见过的用户 prompt。通过对不同的分割任务进行训练,模型具有处理各种 prompt 的能力。此外,不同类型的 prompt 可以借助交叉注意力互相辅助。最终,SEEM 模型可以使用各种 prompt 来获得卓越的分割结果。

除了强大的泛化能力,SEEM 在运行方面也很高效。研究人员将 prompt 作为解码器的输入,因此在与人类进行多轮交互时,SEEM 只需要在最开始运行一次特征提取器。在每次迭代中,只需要使用新的 prompt 再次运行一个轻量级的解码器。因此,在部署模型时,参数量大运行负担重的特征提取器可以在服务器上运行,而在用户的机器上仅运行相对轻量级的解码器,以缓解多次远程调用中的网络延迟问题。

如上图 3(b)所示,在多轮交互中,每次交互包含一个人工循环和一个模型循环。在人工循环中,人接收上一次迭代的掩码输出,并通过视觉 prompt 给出下一轮解码的正反馈或负反馈。在模型循环中,模型接收并更新记忆 prompt 供未来的预测。

实验结果

该研究将 SEEM 模型与 SOTA 交互式分割模型进行了实验比较,结果如下表 1 所示。

一次性分割一切,比SAM更强,华人团队的通用分割模型SEEM来了

作为一个通用模型,SEEM 实现了与 RITM,SimpleClick 等模型相当的性能,并且与 SAM 的性能非常接近,而 SAM 用于训练的分割数据是 SEEM 的 50 倍之多。

与现有的交互式模型不同,SEEM 是第一个不仅支持经典分割任务,还支持各种用户输入类型的通用接口,包括文本、点、涂鸦、框和图像,提供强大的组合功能。如下表 2 所示,通过添加可组合的 prompt,SEEM 在 cIoU,mIoU 等指标上有了显著的分割性能提升。

一次性分割一切,比SAM更强,华人团队的通用分割模型SEEM来了

我们再来看一下交互式图像分割的可视化结果。用户只需要画出一个点或简单涂鸦,SEEM 就能提供非常好的分割结果

一次性分割一切,比SAM更强,华人团队的通用分割模型SEEM来了

也可以输入文本,让 SEEM 进行图像分割

一次性分割一切,比SAM更强,华人团队的通用分割模型SEEM来了

还能直接输入参考图像并指出参考区域,对其他图像进行分割,找出与参考区域一致的物体:

一次性分割一切,比SAM更强,华人团队的通用分割模型SEEM来了

该项目已经可以线上试玩,感兴趣的读者快去试试吧。

文中关于模型,CV的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《一次性分割一切,比SAM更强,华人团队的通用分割模型SEEM来了》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
mysql查询select语句的示例分析mysql查询select语句的示例分析
上一篇
mysql查询select语句的示例分析
Go语言并发编程必备的Mutex互斥锁怎么用
下一篇
Go语言并发编程必备的Mutex互斥锁怎么用
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    514次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    499次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO  AI Mermaid 流程图:自然语言生成,文本驱动可视化创作
    AI Mermaid流程图
    SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
    669次使用
  • 搜获客笔记生成器:小红书医美爆款内容AI创作神器
    搜获客【笔记生成器】
    搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
    679次使用
  • iTerms:一站式法律AI工作台,智能合同审查起草与法律问答专家
    iTerms
    iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
    702次使用
  • TokenPony:AI大模型API聚合平台,一站式接入,高效稳定高性价比
    TokenPony
    TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
    766次使用
  • 迅捷AIPPT:AI智能PPT生成器,高效制作专业演示文稿
    迅捷AIPPT
    迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
    657次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码