威大哥大等联合发文!最新多模态大模型LLaVA问世,水平直逼GPT-4
本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《威大哥大等联合发文!最新多模态大模型LLaVA问世,水平直逼GPT-4》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~
视觉指令微调火了。
这篇论文名为Visual Instruction Tuning,由威斯康星大学麦迪逊分校,微软研究院和哥伦比亚大学共同出品。
作者包括Haotian Liu,Chunyuan Li,Qingyang Wu和Yong Jae Lee。
同时,研究人员也在GitHub上开源了他们的代码、模型和数据集。论文也发布在了Arxiv上。
讲解
那么LLaVA的功能究竟是什么呢?如果一头扎进论文,不熟悉的朋友可能会有些陌生。
我们先看看LLaVA自己怎么说。
以上回答生成自LLaVA的Chatbot,我输入的问题是,LLaVA的功能是什么,用户该如何利用它?
回答如下:
LLaVA是一个大语言和视觉助手,在UW Madison WAIV实验室经受的训练。LLaVA被设计出来的目的,就是帮助用户处理各类任务,方法则是借助自然语言理解的能力和视觉内容分析的能力。
LLaVA的主要功能包括:
· 以文本为基础的任务:LLaVA可以处理并分析文本,允许用户问问题,LLaVA可以和用户交谈,或者完成用户输入的任务,比如说提炼文件概要,情感分析,实体识别等等。
· 以图像为基础的任务:LLaVA可以分析图像,描述图像,进行物体识别,分析理解场景。
用户如果想更好地应用LLaVA,可以直接和LLaVA进行交谈,就像和人类之间对话一样。尽可能多的提供细节,LLaVA就会生成出一个更完善的答案。
同时应该记住,说到底LLaVA是一个机器学习模型,是一个AI工具。只要是工具,就有其限制。LLaVA不一定每一次都能完美地回答用户输入的问题。
当然,LLaVA也在不断学习和完善,其功能也会越来越强大。
总的来说,从LLaVA的回答中可以看出,在Chatbot这方面,和GPT的功能差不了太多。但是LLaVA可以处理一些有关图像的任务。
表现出彩
研究人员在Arxiv的论文中详细介绍了LLaVA的技术细节。
要知道使用机器生成的指令跟随数据对大型语言模型(LLMs)进行指令微调,提高了新任务的零点能力,但这个想法在多模态领域的探索较少。
在论文中,研究人员首次尝试使用仅有语言的GPT-4来生成多模态语言图像的指令跟随数据。
通过对这种生成的数据进行指令调整,研究人员引入了LLaVA:这是一个大型语言和视觉助手,是一个端到端的训练有素的大型多模态模型,它连接了一个视觉编码器和LLM,用于通用的视觉和语言理解。
早期实验表明,LLaVA展示了令人印象深刻的多模态聊天能力,有时在未见过的图像/指令上都能输出多模态GPT-4的表现,在合成的多模态指令跟随数据集上与GPT-4相比,获得了85.1%的相对分数。
当对Science杂志进行微调时,LLaVA和GPT-4的协同作用达到了92.53%的新的最先进的准确性。
研究人员公开了GPT-4生成的视觉指令调整的数据、模型和代码库。
多模态模型
首先厘清定义。
大型多模态模型指的就是一种基于机器学习技术的模型,能够处理和分析多种输入类型,如文本和图像。
这些模型设计用于处理更广泛的任务,并且能够理解不同形式的数据。通过将文本和图像作为输入,这些模型可以提高理解和编解释的能力,从而生成更准确和相关的回答。
人类通过视觉和语言等多种渠道与世界互动,因为每个单独的渠道在代表和传达某些世界概念方面都有独特的优势,从而有利于更好地理解世界。
而人工智能的核心愿望之一是开发一个通用的助手,能够有效地遵循多模态的视觉和语言指令,与人类的意图一致,完成各种真实世界的任务。
因此,开发者社区见证了对开发语言增强的基础视觉模型的新兴趣,在开放世界的视觉理解方面具有强大的能力,如分类、检测、分割、描述,以及视觉生成和编辑。
在这些功能中,每个任务都由一个单一的大型视觉模型独立解决,在模型设计中隐含考虑了任务指令。
此外,语言只被用来描述图像内容。虽然这允许语言在将视觉信号映射到语言语义方面发挥重要作用——这是人类交流的常见渠道。但这会导致模型通常具有固定的界面,互动性和对用户指令的适应性有限。
而大型语言模型(LLM)表明,语言可以发挥更广泛的作用:通用助手的通用界面,各种任务指令可以明确地用语言表示,并引导端到端训练有素的神经助手切换到感兴趣的任务来解决它。
例如,最近ChatGPT和GPT-4的成功,证明了这种LLM在遵循人类指令方面的能力,并激发了人们对开发开源LLM的巨大兴趣。
LLaMA就是一个开源的LLM,其性能与GPT-3相当。正在进行的工作利用各种机器生成的高质量指令跟随样本来提高LLM的对齐能力,与专有LLM相比,报告了令人印象深刻的性能。重要的是,这一行的工作是纯文本的。
在本文中,研究人员提出了视觉指令调整,这是将指令调整扩展到多模态空间的首次尝试,它为建立一个通用的视觉助手铺平了道路。具体来说,论文的主要内容包括:
多模态的指令跟随数据。一个关键的挑战是缺乏视觉语言指令-跟随数据。我们提出了一个数据改革的观点和管道,使用ChatGPT/GPT-4将图像-文本对转换为适当的指令-跟随格式。
大型多模态模型。研究人员开发了一个大型多模态模型(LMM),通过连接CLIP的开放集视觉编码器和语言解码器LaMA,并在生成的教学视觉——语言数据上对它们进行端到端的微调。实证研究验证了使用生成的数据进行LMM指令调谐的有效性,并为建立一个通用的指令跟随的视觉代理提出了实用的建议。通过GPT 4,研究小组在Science QA多模态推理数据集上取得了最先进的性能。
开源。研究小组向公众发开了以下内容:生成的多模态指令数据、用于数据生成和模型训练的代码库、模型检查点,以及一个视觉聊天演示。
成果展示
可以看到,LLaVA能处理各类问题,且生成的回答既全面又富有逻辑。
LLaVA表现出一些接近GPT-4水平的多模态能力,在视觉聊天方面,GPT-4相对评分85%。
而在推理问答方面,LLaVA甚至达到了新SoTA——92.53%,击败多模态思维链。
好了,本文到此结束,带大家了解了《威大哥大等联合发文!最新多模态大模型LLaVA问世,水平直逼GPT-4》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

- 上一篇
- 这七款基于AI的工具让数据科学家如虎添翼

- 下一篇
- OpenAI前员工搞了个GPT杀手,免费使用,点击即玩
-
- 淡定的帅哥
- 好细啊,码住,感谢作者的这篇博文,我会继续支持!
- 2023-06-18 05:01:07
-
- 开朗的手链
- 这篇文章出现的刚刚好,老哥加油!
- 2023-06-03 02:32:23
-
- 拼搏的灯泡
- 真优秀,一直没懂这个问题,但其实工作中常常有遇到...不过今天到这,看完之后很有帮助,总算是懂了,感谢作者大大分享博文!
- 2023-05-30 23:08:14
-
- 忐忑的路灯
- 这篇文章内容真及时,太全面了,赞 👍👍,已收藏,关注博主了!希望博主能多写科技周边相关的文章。
- 2023-05-27 03:21:21
-
- 高挑的乌冬面
- 好细啊,已收藏,感谢大佬的这篇博文,我会继续支持!
- 2023-05-06 06:02:59
-
- 追寻的朋友
- 赞 👍👍,一直没懂这个问题,但其实工作中常常有遇到...不过今天到这,帮助很大,总算是懂了,感谢楼主分享技术贴!
- 2023-05-05 16:03:56
-
- 端庄的红牛
- 这篇技术贴真及时,太详细了,很有用,码住,关注作者了!希望作者能多写科技周边相关的文章。
- 2023-05-03 11:55:45
-
- 陶醉的世界
- 这篇技术文章出现的刚刚好,博主加油!
- 2023-04-30 01:28:01
-
- 科技周边 · 人工智能 | 5小时前 |
- 小米SU7订单18万未交付,月产能暴增6倍
- 361浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 | iPhone17Pro 天蓝色 M4MacBookAir
- iPhone17Pro/ProMax弃钛金属,拥抱天蓝色
- 272浏览 收藏
-
- 科技周边 · 人工智能 | 8小时前 |
- 问界M8快报:MAX+版最火,BAL车主热捧
- 335浏览 收藏
-
- 科技周边 · 人工智能 | 10小时前 |
- 港大与Adobe联手推出PixelFlow图像生成模型
- 135浏览 收藏
-
- 科技周边 · 人工智能 | 12小时前 | 摩尔线程 招聘诈骗 @mthreads.com 官方客服 法律责任
- 摩尔线程重磅声明发布
- 406浏览 收藏
-
- 科技周边 · 人工智能 | 15小时前 |
- 玛莎拉蒂GT2Stradale国内首秀售414.5万
- 226浏览 收藏
-
- 科技周边 · 人工智能 | 17小时前 |
- 美股反弹艰难,三大指数涨跌不一,英伟达跌3%
- 301浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 笔灵AI生成答辩PPT
- 探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
- 30次使用
-
- 知网AIGC检测服务系统
- 知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
- 44次使用
-
- AIGC检测-Aibiye
- AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
- 40次使用
-
- 易笔AI论文
- 易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
- 53次使用
-
- 笔启AI论文写作平台
- 笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
- 43次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览