Keras神经网络教程:快速建模入门指南
“纵有疾风来,人生不言弃”,这句话送给正在学习科技周边的朋友们,也希望在阅读本文《Keras快速建模教程:神经网络搭建入门》后,能够真的帮助到大家。我也会在后续的文章中,陆续更新科技周边相关的技术文章,有好的建议欢迎大家在评论留言,非常感谢!
使用 Keras 快速搭建神经网络模型需掌握以下步骤:1. 安装 Keras 并确认后端环境,推荐通过 tensorflow.keras 导入模块;2. 使用 Sequential 模型堆叠层,定义输入形状、神经元数量和激活函数;3. 编译模型时选择合适的损失函数、优化器和评估指标;4. 准备数据并调用 .fit() 开始训练,合理设置 epochs 和 batch_size 并划分验证集。

Keras 是一个非常友好的深度学习框架,适合初学者快速上手构建神经网络模型。如果你刚接触 Keras,可能会觉得 API 看起来有点抽象,但其实只要掌握几个核心模块和流程,就能很快搭出一个可用的模型。

下面是一些关键点和建议,帮你用 Keras 快速搭建起一个神经网络模型。

1. 安装 Keras 并确认后端环境
Keras 本身是一个高级封装接口,默认使用 TensorFlow 作为后端(也可以切换成 Theano 或 CNTK,但最推荐的是 TensorFlow)。
安装方式很简单,如果你已经安装了 Python 和 pip,直接运行:

pip install keras
安装完成后,可以运行一段简单代码测试是否正常:
from tensorflow import keras print(keras.__version__)
确保输出版本号没问题,说明环境准备好了。
注意:Keras 2.0 之后都是基于 TensorFlow 的,所以现在一般都推荐直接通过
tensorflow.keras来导入模块,这样兼容性和文档支持更好。
2. 使用 Sequential 模型快速堆叠层
Keras 提供了两种建模方式:Sequential 和 函数式 API。对于新手来说,先从 Sequential 开始是最快捷的方式。
它就像搭积木一样,一层一层往上加,结构清晰、逻辑简单。
举个例子,我们要搭建一个三层全连接网络:
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense model = Sequential() model.add(Dense(32, activation='relu', input_shape=(784,))) model.add(Dense(16, activation='relu')) model.add(Dense(10, activation='softmax'))
这里有几个需要注意的地方:
- 第一层要指定
input_shape,告诉模型输入数据的维度。 - 每一层的神经元数量和激活函数可以根据任务调整。
- 最后一层的输出单元数通常对应你的类别数或目标维度。
3. 编译模型并选择合适的损失函数和优化器
在训练之前,需要调用 .compile() 方法来配置模型的学习过程。
常见的组合如下:
分类任务常用:
- 损失函数:
categorical_crossentropy - 优化器:
Adam或RMSprop - 评估指标:
accuracy
- 损失函数:
回归任务常用:
- 损失函数:
mse(均方误差) - 优化器:
Adam - 评估指标:
mae(平均绝对误差)
- 损失函数:
示例代码:
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])这个步骤虽然看起来简单,但非常重要。选错损失函数或优化器,模型可能根本学不到东西。
4. 准备数据并开始训练
Keras 支持 NumPy 数组作为输入,也支持 Dataset 类型的数据流。
假设你已经有了训练数据 x_train 和标签 y_train,可以直接调用 .fit():
model.fit(x_train, y_train, epochs=5, batch_size=32)
几点实用建议:
epochs控制训练轮数,太小可能欠拟合,太大可能过拟合。batch_size常见取值为 32、64、128,根据硬件资源调整。- 可以加入
validation_split=0.2来自动划分验证集,观察模型泛化能力。
例如:
model.fit(x_train, y_train,
epochs=10,
batch_size=64,
validation_split=0.2)基本上就这些。只要掌握了这几个基本步骤,就可以用 Keras 搭建起自己的第一个神经网络模型了。不复杂,但容易忽略细节,比如输入形状、损失函数的选择等,一定要多注意这些地方。
今天关于《Keras神经网络教程:快速建模入门指南》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于的内容请关注golang学习网公众号!
Python正则表达式数据验证技巧
- 上一篇
- Python正则表达式数据验证技巧
- 下一篇
- PHP框架虚拟主机设置教程
-
- 科技周边 · 人工智能 | 7小时前 | AI模型 高级功能 ChatGPTPlus 免费版 使用额度
- ChatGPTPlus值得买吗?会员版对比免费版
- 394浏览 收藏
-
- 科技周边 · 人工智能 | 8小时前 |
- Deepseek联手ResembleAI,打造专属语音助手
- 489浏览 收藏
-
- 科技周边 · 人工智能 | 8小时前 |
- DeepSeek网页版入口与使用方法
- 384浏览 收藏
-
- 科技周边 · 人工智能 | 9小时前 |
- 豆包AI创意激发法头脑风暴技巧分享
- 306浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3167次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3380次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3409次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4513次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3789次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览

