当前位置:首页 > 文章列表 > 文章 > python教程 > 用Polars计算余弦相似度矩阵教程

用Polars计算余弦相似度矩阵教程

2025-11-01 15:45:31 0浏览 收藏

本文详细介绍了使用 Polars 库计算DataFrame列间余弦相似度的方法,并以相关矩阵形式呈现。首先,通过`join_where`方法生成列组合,避免重复计算,然后利用高效的Polars表达式计算余弦相似度,最后使用`pivot`方法将结果转换为易于分析的矩阵。文章提供了详细的代码示例,展示了如何准备数据、计算相似度以及转换矩阵。掌握此方法,可应用于推荐系统、文本相似度计算等多种数据分析场景。阅读本文前,请确保已安装Polars库 (`pip install polars`),并注意Polars版本需支持列表算术运算。

使用 Polars 计算 DataFrame 的相关矩阵:余弦相似度方法详解

本文档详细介绍了如何使用 Polars 库计算 DataFrame 中各列之间的余弦相似度,并将其以相关矩阵的形式呈现。通过 join_where 方法生成列组合,利用 Polars 表达式计算余弦相似度,最后使用 pivot 方法将结果转换为矩阵形式,方便进行数据分析和挖掘。

前提条件

确保你已经安装了 Polars 库。可以使用 pip 进行安装:

pip install polars

数据准备

首先,我们创建一个 Polars DataFrame,其中包含字符串列 col1 和列表列 col2。col2 列包含数值列表,我们将基于这些列表计算余弦相似度。

import polars as pl
from numpy.linalg import norm

data = {
    "col1": ["a", "b", "c", "d"],
    "col2": [[-0.06066, 0.072485, 0.548874, 0.158507],
             [-0.536674, 0.10478, 0.926022, -0.083722],
             [-0.21311, -0.030623, 0.300583, 0.261814],
             [-0.308025, 0.006694, 0.176335, 0.533835]],
}

df = pl.DataFrame(data)

print(df)

输出:

shape: (4, 2)
┌──────┬─────────────────────────────────┐
│ col1 ┆ col2                            │
│ ---  ┆ ---                             │
│ str  ┆ list[f64]                       │
╞══════╪═════════════════════════════════╡
│ a    ┆ [-0.06066, 0.072485, … 0.15850… │
│ b    ┆ [-0.536674, 0.10478, … -0.0837… │
│ c    ┆ [-0.21311, -0.030623, … 0.2618… │
│ d    ┆ [-0.308025, 0.006694, … 0.5338… │
└──────┴─────────────────────────────────┘

生成列组合

为了计算每对列之间的余弦相似度,我们需要生成所有可能的列组合。我们可以使用 join_where 方法来实现这一点。首先,添加一个行索引,然后使用 join_where 将 DataFrame 与自身连接,条件是左侧的索引小于等于右侧的索引,以避免重复计算。

df = df.with_row_index().lazy()

combinations_df = df.join_where(df, pl.col("index") <= pl.col("index_right")).collect()

print(combinations_df)

输出:

shape: (10, 6)
┌───────┬──────┬─────────────────────────────────┬─────────────┬────────────┬─────────────────────────────────┐
│ index ┆ col1 ┆ col2                            ┆ index_right ┆ col1_right ┆ col2_right                      │
│ ---   ┆ ---  ┆ ---                             ┆ ---         ┆ ---        ┆ ---                             │
│ u32   ┆ str  ┆ list[f64]                       ┆ u32         ┆ str        ┆ list[f64]                       │
╞═══════╪══════╪═════════════════════════════════╪═════════════╪════════════╪═════════════════════════════════╡
│ 0     ┆ a    ┆ [-0.06066, 0.072485, … 0.15850… ┆ 0           ┆ a          ┆ [-0.06066, 0.072485, … 0.15850… │
│ 0     ┆ a    ┆ [-0.06066, 0.072485, … 0.15850… ┆ 1           ┆ b          ┆ [-0.536674, 0.10478, … -0.0837… │
│ 0     ┆ a    ┆ [-0.06066, 0.072485, … 0.15850… ┆ 2           ┆ c          ┆ [-0.21311, -0.030623, … 0.2618… │
│ 0     ┆ a    ┆ [-0.06066, 0.072485, … 0.15850… ┆ 3           ┆ d          ┆ [-0.308025, 0.006694, … 0.5338… │
│ 1     ┆ b    ┆ [-0.536674, 0.10478, … -0.0837… ┆ 1           ┆ b          ┆ [-0.536674, 0.10478, … -0.0837… │
│ 1     ┆ b    ┆ [-0.536674, 0.10478, … -0.0837… ┆ 2           ┆ c          ┆ [-0.21311, -0.030623, … 0.2618… │
│ 1     ┆ b    ┆ [-0.536674, 0.10478, … -0.0837… ┆ 3           ┆ d          ┆ [-0.308025, 0.006694, … 0.5338… │
│ 2     ┆ c    ┆ [-0.21311, -0.030623, … 0.2618… ┆ 2           ┆ c          ┆ [-0.21311, -0.030623, … 0.2618… │
│ 2     ┆ c    ┆ [-0.21311, -0.030623, … 0.2618… ┆ 3           ┆ d          ┆ [-0.308025, 0.006694, … 0.5338… │
│ 3     ┆ d    ┆ [-0.308025, 0.006694, … 0.5338… ┆ 3           ┆ d          ┆ [-0.308025, 0.006694, … 0.5338… │
└───────┴──────┴─────────────────────────────────┴─────────────┴────────────┴─────────────────────────────────┘

计算余弦相似度

定义一个函数来计算两个向量之间的余弦相似度。 利用 Polars 表达式,我们可以高效地计算余弦相似度。

cosine_similarity = lambda x, y: (
    (x * y).list.sum() / (
        (x * x).list.sum().sqrt() * (y * y).list.sum().sqrt()
    )
)

现在,我们可以使用这个函数来计算每对列之间的余弦相似度。

out = (
   combinations_df
     .select(
        col = "col1",
        other = "col1_right",
        cosine = cosine_similarity(
           x = pl.col("col2"),
           y = pl.col("col2_right")
        )
     )
)

print(out)

输出:

shape: (10, 3)
┌─────┬───────┬──────────┐
│ col ┆ other ┆ cosine   │
│ --- ┆ ---   ┆ ---      │
│ str ┆ str   ┆ f64      │
╞═════╪═══════╪══════════╡
│ a   ┆ a     ┆ 1.0      │
│ a   ┆ b     ┆ 0.856754 │
│ a   ┆ c     ┆ 0.827877 │
│ a   ┆ d     ┆ 0.540282 │
│ b   ┆ b     ┆ 1.0      │
│ b   ┆ c     ┆ 0.752199 │
│ b   ┆ d     ┆ 0.411564 │
│ c   ┆ c     ┆ 1.0      │
│ c   ┆ d     ┆ 0.889009 │
│ d   ┆ d     ┆ 1.0      │
└─────┴───────┴──────────┘

转换为相关矩阵

为了将结果转换为相关矩阵的形式,我们需要将上面的结果进行透视。首先,我们需要将 out DataFrame 中 col 和 other 列互换,然后与原始的 out DataFrame 进行垂直拼接,最后使用 pivot 方法进行透视。

result = pl.concat(
   [
      out, 
      out.filter(pl.col("col") != pl.col("other")).select(col="other", other="col", cosine="cosine")
   ]
).collect().pivot(values="cosine", index="col", columns="other")

print(result)

输出:

shape: (4, 5)
┌─────┬──────────┬──────────┬──────────┬──────────┐
│ col ┆ a        ┆ b        ┆ c        ┆ d        │
│ --- ┆ ---      ┆ ---      ┆ ---      ┆ ---      │
│ str ┆ f64      ┆ f64      ┆ f64      ┆ f64      │
╞═════╪══════════╪══════════╪══════════╪══════════╡
│ a   ┆ 1.0      ┆ 0.856754 ┆ 0.827877 ┆ 0.540282 │
│ b   ┆ 0.856754 ┆ 1.0      ┆ 0.752199 ┆ 0.411564 │
│ c   ┆ 0.827877 ┆ 0.752199 ┆ 1.0      ┆ 0.889009 │
│ d   ┆ 0.540282 ┆ 0.411564 ┆ 0.889009 ┆ 1.0      │
└─────┴──────────┴──────────┴──────────┴──────────┘

现在,result DataFrame 就是我们想要的相关矩阵,其中每个值表示对应列之间的余弦相似度。

总结

本文档介绍了如何使用 Polars 库计算 DataFrame 中各列之间的余弦相似度,并将其以相关矩阵的形式呈现。通过 join_where 方法生成列组合,利用 Polars 表达式计算余弦相似度,最后使用 pivot 方法将结果转换为矩阵形式。这种方法可以应用于各种数据分析和挖掘任务,例如推荐系统、文本相似度计算等。

注意事项:

  • 确保你的 Polars 版本支持列表算术运算。如果你的 Polars 版本低于 1.8.0,请升级到最新版本。
  • 在处理大型 DataFrame 时,可以考虑使用 lazy evaluation 来提高性能。
  • 余弦相似度是一种常用的相似度度量方法,但它只考虑向量之间的角度,不考虑向量的长度。在某些情况下,可能需要使用其他的相似度度量方法。

好了,本文到此结束,带大家了解了《用Polars计算余弦相似度矩阵教程》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!

Golang指针数据竞争解决方法Golang指针数据竞争解决方法
上一篇
Golang指针数据竞争解决方法
蛙漫2日版官网入口及观看教程
下一篇
蛙漫2日版官网入口及观看教程
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3172次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3383次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3412次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4517次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3792次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码