用Pandas创建嵌套字典的技巧分享
有志者,事竟成!如果你在学习文章,那么本文《用Pandas创建嵌套字典的实用方法》,就很适合你!文章讲解的知识点主要包括,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~

本文详细介绍了如何将扁平化的Pandas DataFrame转换为嵌套字典结构,以实现基于多级键的快速数据查询。通过深入讲解`pd.DataFrame.pivot`方法的应用,以及如何结合`to_dict()`进行最终转换,我们提供了一个高效且优雅的解决方案,避免了传统方法中因键重复而导致的限制,并附带了完整的代码示例。
在数据处理和分析中,我们经常需要将表格形式的数据(如Pandas DataFrame)转换为更具层次感的结构,例如嵌套字典,以便于通过多级键进行高效的数据查找。本文将介绍如何利用Pandas库的强大功能,特别是pivot方法,将一个扁平的DataFrame转换成所需的嵌套字典格式。
理解问题与传统方法的局限
假设我们有一个包含团队、类型(X或Y)和百分比信息的DataFrame,其结构如下:
| Team | X or Y | Percentage |
|---|---|---|
| A | X | 80% |
| A | Y | 20% |
| B | X | 70% |
| B | Y | 30% |
| C | X | 60% |
| C | Y | 40% |
我们的目标是创建一个嵌套字典,其格式为 {'TeamName': {'X_or_Y_Type': 'Percentage'}},例如 {'A':{'X':'80%', 'Y':'20%'}, ...}。这样,我们就可以通过 my_dict['A']['X'] 快速获取相应的值。
初学者可能会尝试使用Python的 zip 和 dict 构造函数,例如 dict(zip(list1, dict(zip(list2, list3))))。然而,这种方法存在一个核心限制:Python字典的键必须是唯一的。在上述场景中,如果直接将 "X or Y" 列作为内层字典的键,或者将 "Team" 列作为外层字典的键,当这些列中存在重复值时(例如,Team A同时有X和Y),直接转换会导致信息丢失,因为重复的键会被后续的值覆盖。
解决方案:利用 pd.DataFrame.pivot
Pandas的 pivot 方法是解决这类问题的理想工具。它允许我们根据一个或多个列的值来重塑DataFrame,将行转换为列,或者将列转换为行,并指定填充单元格的值。
pivot 方法的基本语法是 df.pivot(index=None, columns=None, values=None):
- index: 用于构建新DataFrame索引的列名。
- columns: 用于构建新DataFrame列名的列名。
- values: 用于填充新DataFrame单元格的列名。
为了实现 {'TeamName': {'X_or_Y_Type': 'Percentage'}} 这样的嵌套结构,我们需要将 Team 作为外层键,X or Y 作为内层键,Percentage 作为最终值。
首先,让我们创建示例DataFrame:
import pandas as pd
data = {
'Team': ['A', 'A', 'B', 'B', 'C', 'C'],
'X or Y': ['X', 'Y', 'X', 'Y', 'X', 'Y'],
'Percentage': ['80%', '20%', '70%', '30%', '60%', '40%']
}
df = pd.DataFrame(data)
print("原始DataFrame:")
print(df)接下来,使用 pivot 方法重塑DataFrame。为了让 Team 成为最终字典的外层键(对应于 to_dict() 转换后的主键),我们需要让它成为 pivot 结果的列。而 X or Y 则需要成为内层键,所以它将是 pivot 结果的索引。Percentage 自然是值。
# 使用pivot重塑DataFrame
# index='X or Y' 会让 X 和 Y 成为新DataFrame的行索引
# columns='Team' 会让 A, B, C 成为新DataFrame的列名
# values='Percentage' 会用百分比填充单元格
pivoted_df = df.pivot(index='X or Y', columns='Team', values='Percentage')
print("\n重塑后的DataFrame (pivoted_df):")
print(pivoted_df)输出的 pivoted_df 将会是这样的:
Team A B C X or Y X 80% 70% 60% Y 20% 30% 40%
这个重塑后的DataFrame已经非常接近我们想要的结构了。它的列名是团队名称,行索引是X或Y类型,单元格中是百分比。
最终转换:to_dict()
一旦DataFrame被正确地 pivot,我们就可以使用 to_dict() 方法将其转换为字典。to_dict() 方法有多种参数可以控制转换的格式,但对于这种列名作为外层键的结构,默认的 to_dict() 行为通常是最佳选择。
# 将重塑后的DataFrame转换为嵌套字典
nested_dict = pivoted_df.to_dict()
print("\n最终的嵌套字典:")
print(nested_dict)最终输出的 nested_dict 将是:
{'A': {'X': '80%', 'Y': '20%'}, 'B': {'X': '70%', 'Y': '30%'}, 'C': {'X': '60%', 'Y': '40%'}}这正是我们所期望的结构。
完整示例代码
import pandas as pd
# 1. 准备原始DataFrame
data = {
'Team': ['A', 'A', 'B', 'B', 'C', 'C'],
'X or Y': ['X', 'Y', 'X', 'Y', 'X', 'Y'],
'Percentage': ['80%', '20%', '70%', '30%', '60%', '40%']
}
df = pd.DataFrame(data)
print("--- 原始DataFrame ---")
print(df)
print("-" * 30)
# 2. 使用 pivot 方法重塑DataFrame
# index='X or Y' 设定内层键(行索引)
# columns='Team' 设定外层键(列名)
# values='Percentage' 设定字典的值
pivoted_df = df.pivot(index='X or Y', columns='Team', values='Percentage')
print("\n--- 重塑后的DataFrame ---")
print(pivoted_df)
print("-" * 30)
# 3. 将重塑后的DataFrame转换为嵌套字典
nested_dict = pivoted_df.to_dict()
print("\n--- 最终的嵌套字典 ---")
print(nested_dict)
print("-" * 30)
# 4. 验证数据访问
print(f"\n访问 'A' 队的 'X' 百分比: {nested_dict['A']['X']}")
print(f"访问 'C' 队的 'Y' 百分比: {nested_dict['C']['Y']}")注意事项与总结
- 唯一性要求:pivot 方法要求 index 和 columns 列的组合必须是唯一的。如果存在重复的 (index, columns) 组合,pivot 将会报错。如果你的数据可能存在重复组合,并且你需要聚合这些重复值(例如求和、平均值),那么应该使用 pivot_table 而非 pivot。
- 数据类型:在示例中,百分比被存储为字符串(例如 '80%')。如果需要进行数值计算,应在转换前或转换后将这些字符串转换为数值类型(例如浮点数)。
- 灵活性:pivot 方法非常灵活。通过调整 index 和 columns 参数,你可以生成不同层次结构的嵌套字典。例如,如果想让 'X or Y' 成为外层键,'Team' 成为内层键,只需互换 index 和 columns 的值即可。
通过掌握 pd.DataFrame.pivot 方法,我们可以高效、优雅地将扁平的表格数据转换为复杂的嵌套字典结构,极大地提高了数据访问和处理的便利性,尤其适用于需要多级索引查询的场景。
今天关于《用Pandas创建嵌套字典的技巧分享》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于的内容请关注golang学习网公众号!
CSS工具自动生成Mixins方法
- 上一篇
- CSS工具自动生成Mixins方法
- 下一篇
- 一键PHP支持Composer吗?
-
- 文章 · python教程 | 5小时前 |
- Python语言入门与基础解析
- 296浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- PyMongo导入CSV:类型转换技巧详解
- 351浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Python列表优势与实用技巧
- 157浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Pandas修改首行数据技巧分享
- 485浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Python列表创建技巧全解析
- 283浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Python计算文件实际占用空间技巧
- 349浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- OpenCV中OCR技术应用详解
- 204浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- Pandas读取Django表格:协议关键作用
- 401浏览 收藏
-
- 文章 · python教程 | 10小时前 | 身份验证 断点续传 requests库 PythonAPI下载 urllib库
- Python调用API下载文件方法
- 227浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- Windows7安装RtMidi失败解决办法
- 400浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- Python异步任务优化技巧分享
- 327浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3182次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3393次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3424次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4528次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3802次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

