当前位置:首页 > 文章列表 > 文章 > python教程 > Polars列表结构化技巧与重塑方法

Polars列表结构化技巧与重塑方法

2025-10-27 23:00:34 0浏览 收藏

从现在开始,努力学习吧!本文《Polars列表结构化转换与重塑技巧》主要讲解了等等相关知识点,我会在golang学习网中持续更新相关的系列文章,欢迎大家关注并积极留言建议。下面就先一起来看一下本篇正文内容吧,希望能帮到你!

Polars中列表列的结构化转换与重塑技巧

本文详细介绍了如何在Polars DataFrame中将包含列表的列进行高效重塑。通过组合使用`unpivot`、`list.to_struct`和`unnest`等核心操作,教程演示了如何将宽格式的列表列转换为长格式,并动态地将列表元素扩展为独立的数值列,从而实现复杂的数据结构转换,提升数据处理的灵活性和效率。

在数据分析和处理中,我们经常会遇到需要将数据从一种结构转换到另一种结构的情况。特别是在处理包含列表(List)类型数据的列时,将其展开并重塑成更易于分析的表格形式是一个常见的需求。Polars作为一款高性能的DataFrame库,提供了强大且灵活的API来应对这类挑战。本教程将详细讲解如何利用Polars的unpivot、list.to_struct和unnest等操作,将一个包含列表列的DataFrame转换为指定的长格式,其中原始列名将成为一个新列的值,而列表中的元素则被展开成新的数值列。

初始数据结构

假设我们有一个Polars DataFrame,其中包含多列,每列的值都是一个整数列表。例如:

import polars as pl

df = pl.DataFrame({
    "foo": [[1, 2, 3], [7, 8, 9]],
    "bar": [[4, 5, 6], [1, 0, 1]]
})

print("原始DataFrame:")
print(df)

输出如下:

原始DataFrame:
shape: (2, 2)
┌───────────┬───────────┐
│ foo       ┆ bar       │
│ ---       ┆ ---       │
│ list[i64] ┆ list[i64] │
╞═══════════╪═══════════╡
│ [1, 2, 3] ┆ [4, 5, 6] │
│ [7, 8, 9] ┆ [1, 0, 1] │
└───────────┴───────────┘

我们的目标是将其转换为以下形式:

shape: (4, 4)
┌──────┬────────┬────────┬────────┐
│ Name ┆ Value0 ┆ Value1 ┆ Value2 │
│ ---  ┆ ---    ┆ ---    ┆ ---    │
│ str  ┆ i64    ┆ i64    ┆ i64    │
╞══════╪════════╪════════╪════════╡
│ foo  ┆ 1      ┆ 2      ┆ 3      │
│ foo  ┆ 7      ┆ 8      ┆ 9      │
│ bar  ┆ 4      ┆ 5      ┆ 6      │
│ bar  ┆ 1      ┆ 0      ┆ 1      │
└──────┴────────┴────────┴────────┘

转换步骤详解

要实现上述转换,我们需要分三步操作:

  1. 解除透视(Unpivot):将原始列名转换为一个新列的值。
  2. 列表转结构体(List to Struct):将包含列表的列转换为结构体(Struct)列,为下一步的展开做准备。
  3. 展开结构体(Unnest):将结构体列展开成多个独立的列。

下面我们将详细介绍每一步的操作。

步骤一:解除透视 (unpivot)

unpivot操作(也常被称为“melt”或“stack”)用于将DataFrame从宽格式转换为长格式。它会将一个或多个指定列的名称和值转换为新的两列:一列包含原始列名(通常称为“变量”列),另一列包含原始列的值(通常称为“值”列)。

在本例中,我们将foo和bar两列解除透视。variable_name参数用于指定存储原始列名的新列的名称,value_name参数用于指定存储原始列值的新列的名称。

df_unpivoted = df.unpivot(variable_name="Name", value_name="value")
print("\n解除透视后的DataFrame:")
print(df_unpivoted)

输出如下:

解除透视后的DataFrame:
shape: (4, 2)
┌──────┬───────────┐
│ Name ┆ value     │
│ ---  ┆ ---       │
│ str  ┆ list[i64] │
╞══════╪═══════════╡
│ foo  ┆ [1, 2, 3] │
│ foo  ┆ [7, 8, 9] │
│ bar  ┆ [4, 5, 6] │
│ bar  ┆ [1, 0, 1] │
└──────┴───────────┘

现在,原始的foo和bar列名已合并到Name列中,而它们对应的列表值则合并到value列中。

步骤二:列表转结构体 (list.to_struct)

unnest操作只能作用于结构体(Struct)列。因此,在展开value列中的列表之前,我们需要先将其转换为一个结构体列。list.to_struct()方法可以实现这一转换。

fields参数是关键,它允许我们为结构体中的每个字段(即原始列表中的每个元素)指定一个名称。这里我们使用一个lambda函数lambda x : f"Value{x}"来动态生成字段名,例如Value0, Value1, Value2。

df_struct = df_unpivoted.with_columns(
    pl.col("value").list.to_struct(fields=lambda x : f"Value{x}")
)
print("\n列表转换为结构体后的DataFrame:")
print(df_struct)

输出如下:

列表转换为结构体后的DataFrame:
shape: (4, 2)
┌──────┬───────────────────────────┐
│ Name ┆ value                     │
│ ---  ┆ ---                       │
│ str  ┆ struct[i64, i64, i64]     │
╞══════╪═══════════════════════════╡
│ foo  ┆ {1,2,3}                   │
│ foo  ┆ {7,8,9}                   │
│ bar  ┆ {4,5,6}                   │
│ bar  ┆ {1,0,1}                   │
└──────┴───────────────────────────┘

可以看到,value列现在已经从list[i64]类型变成了struct[i64, i64, i64]类型,其内部包含了三个匿名字段,对应着原始列表的元素。

步骤三:展开结构体 (unnest)

最后一步是使用unnest操作将结构体列展开为多个独立的列。我们指定要展开的列名为value。

df_final = df_struct.unnest("value")
print("\n最终转换后的DataFrame:")
print(df_final)

输出如下:

最终转换后的DataFrame:
shape: (4, 4)
┌──────┬────────┬────────┬────────┐
│ Name ┆ Value0 ┆ Value1 ┆ Value2 │
│ ---  ┆ ---    ┆ ---    │ ---    │
│ str  ┆ i64    ┆ i64    ┆ i64    │
╞══════╪════════╪════════╪════════╡
│ foo  ┆ 1      ┆ 2      ┆ 3      │
│ foo  ┆ 7      ┆ 8      ┆ 9      │
│ bar  ┆ 4      ┆ 5      ┆ 6      │
│ bar  ┆ 1      ┆ 0      ┆ 1      │
└──────┴────────┴────────┴────────┘

至此,我们成功地将原始DataFrame转换成了目标格式。

完整代码示例

为了提高代码的可读性和执行效率,通常会将这些操作链式调用:

import polars as pl

df = pl.DataFrame({
    "foo": [[1, 2, 3], [7, 8, 9]],
    "bar": [[4, 5, 6], [1, 0, 1]]
})

transformed_df = (
    df
    .unpivot(variable_name="Name") # 默认 value_name 为 "value"
    .with_columns(pl.col("value").list.to_struct(fields=lambda x : f"Value{x}"))
    .unnest("value")
)

print("最终转换后的DataFrame (链式调用):")
print(transformed_df)

注意事项与总结

  • 列名冲突:在使用unpivot时,如果原始DataFrame中已经存在名为Name或value的列,需要通过variable_name和value_name参数指定不同的名称,以避免冲突。
  • 列表长度一致性:list.to_struct操作要求列表中所有子列表的长度一致。如果列表长度不一致,可能会导致错误或填充null值。在实际应用中,可能需要先对列表进行填充或截断操作。
  • 性能:Polars的表达式API和其底层Rust实现使得这些链式操作在处理大数据时依然保持高效。
  • 灵活性:fields参数的lambda函数提供了极大的灵活性,可以根据需要动态生成各种列名。

通过本教程,您应该已经掌握了在Polars中进行复杂数据重塑的关键技巧,特别是如何处理和展开包含列表的列。这些操作在数据预处理、特征工程和报告生成等场景中都非常实用。

以上就是《Polars列表结构化技巧与重塑方法》的详细内容,更多关于的资料请关注golang学习网公众号!

CSS浮动多栏布局技巧解析CSS浮动多栏布局技巧解析
上一篇
CSS浮动多栏布局技巧解析
抖音私信广告怎么投诉?投诉有用吗?
下一篇
抖音私信广告怎么投诉?投诉有用吗?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3182次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3393次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3424次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4528次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3802次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码