Python高效读写Parquet文件技巧
本篇文章给大家分享《Python操作Parquet文件的高效方法》,覆盖了文章的常见基础知识,其实一个语言的全部知识点一篇文章是不可能说完的,但希望通过这些问题,让读者对自己的掌握程度有一定的认识(B 数),从而弥补自己的不足,更好的掌握它。
在Python中高效操作Parquet文件的方法包括:使用Pandas配合pyarrow或fastparquet引擎读写文件,适用于小规模数据;面对大规模数据时采用PyArrow模块实现按列或分块读取;优化存储效率可通过设置行组大小、选择压缩算法、按字段分区排序以及避免频繁写入小文件等方式实现。

在Python中操作Parquet文件其实挺常见的,尤其是在处理大规模数据时。Parquet格式因为其高效的压缩和列式存储结构,被广泛用于数据分析流程中。如果你需要读写或优化Parquet文件的存储方式,下面这些方法可以帮你更高效地完成任务。

使用 Pandas 读写 Parquet 文件
最简单的方式是通过 pandas 配合 pyarrow 或 fastparquet 引擎来操作 Parquet 文件。安装好依赖后,可以直接使用:
import pandas as pd
# 读取 Parquet 文件
df = pd.read_parquet('data.parquet')
# 写入 Parquet 文件
df.to_parquet('output.parquet')默认情况下,to_parquet 会使用 pyarrow 作为引擎,它性能更好一些。你也可以指定其他参数,比如压缩算法(snappy、gzip等)或者分列存储。

注意:如果数据量不大,用 Pandas 是最直接的办法;但如果数据太大,可能要考虑用 Dask 或 PyArrow 来处理。
用 PyArrow 处理大规模 Parquet 数据
当你面对的是 G 级甚至 T 级的数据时,Pandas 可能就不够用了。这时候建议使用 pyarrow.parquet 模块,它支持按列读取、分块读取等高级功能。

例如,只读取部分列来提升效率:
import pyarrow.parquet as pq
table = pq.read_table('large_data.parquet', columns=['col1', 'col2'])
df = table.to_pandas()这种方式在只需要部分字段时非常有用,尤其是当原始 Parquet 文件有很多列但你只关心其中几个的时候。
此外,PyArrow 还支持将多个 Parquet 文件合并成一个,或者按分区写入,适合做 ETL 流程中的中间存储。
提升 Parquet 存储效率的几个技巧
Parquet 的优势之一就是存储效率高,但想真正发挥它的潜力,还是有几个细节需要注意:
- 合理设置行组大小(Row Group Size):默认一般是 128MB 或 64MB,太小会导致元数据过多,太大则影响查询性能。
- 选择合适的压缩算法:Snappy 是平衡较好的选择,GZIP 压缩率更高但解压慢,ZSTD 也是不错的新选择。
- 按常用字段分区或排序:如果你经常按某个字段筛选数据,可以考虑在写入时按该字段排序或分区,这样读取时就能跳过不相关的部分。
- 避免频繁的小文件写入:Parquet 不适合频繁写入小文件,容易造成元数据负担。可以先合并再写入。
举个例子,如果你的数据经常按日期查询,那么按日期分区写入 Parquet 文件,可以显著加快查询速度。
基本上就这些。掌握好 Pandas 和 PyArrow 的使用,再结合合理的存储策略,就能在 Python 中高效地操作 Parquet 文件了。
以上就是《Python高效读写Parquet文件技巧》的详细内容,更多关于的资料请关注golang学习网公众号!
JS中takeWhile获取开头符合条件元素方法
- 上一篇
- JS中takeWhile获取开头符合条件元素方法
- 下一篇
- Angular实现类似v-show的显示控制方法
-
- 文章 · python教程 | 28分钟前 | 数据验证 自定义函数 异常处理 条件验证 Pythoncheck函数
- Pythoncheck函数使用方法详解
- 374浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Python语言入门与基础解析
- 296浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- PyMongo导入CSV:类型转换技巧详解
- 351浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Python列表优势与实用技巧
- 157浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Pandas修改首行数据技巧分享
- 485浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- Python列表创建技巧全解析
- 283浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- Python计算文件实际占用空间技巧
- 349浏览 收藏
-
- 文章 · python教程 | 12小时前 |
- OpenCV中OCR技术应用详解
- 204浏览 收藏
-
- 文章 · python教程 | 13小时前 |
- Pandas读取Django表格:协议关键作用
- 401浏览 收藏
-
- 文章 · python教程 | 13小时前 | 身份验证 断点续传 requests库 PythonAPI下载 urllib库
- Python调用API下载文件方法
- 227浏览 收藏
-
- 文章 · python教程 | 13小时前 |
- Windows7安装RtMidi失败解决办法
- 400浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3182次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3393次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3425次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4529次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3802次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

