当前位置:首页 > 文章列表 > 文章 > python教程 > Python相似度函数全解析

Python相似度函数全解析

2025-10-23 23:36:36 0浏览 收藏

有志者,事竟成!如果你在学习文章,那么本文《Python中相似度函数使用详解》,就很适合你!文章讲解的知识点主要包括,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~

答案:Python中无内置similarity函数,常用difflib、fuzzywuzzy、sklearn和自定义方法计算字符串或向量相似度,需根据数据类型选择合适方式。

python中similarity函数的使用

Python 中没有内置的 similarity 函数,但“相似度计算”是常见需求,通常通过第三方库或自定义函数实现。以下介绍几种常用的文本或数据相似度计算方法及其使用方式。

1. 使用 difflib 计算字符串相似度

Python 标准库中的 difflib 提供了 SequenceMatcher 类,可用于比较两个字符串的相似度。

示例代码:

from difflib import SequenceMatcher

def get_similarity(a, b): return SequenceMatcher(None, a, b).ratio()

sim = get_similarity("我喜欢学习", "我爱学习") print(sim) # 输出:0.888...

ratio() 返回 0 到 1 之间的浮点数,值越接近 1 表示越相似。

2. 使用 fuzzywuzzy 库进行模糊匹配

fuzzywuzzy 是一个流行的字符串匹配库,基于 Levenshtein 距离计算相似度。

安装:

pip install fuzzywuzzy python-levenshtein

使用示例:

from fuzzywuzzy import fuzz

sim = fuzz.ratio("北京天安门", "北京天安门广场") print(sim) # 输出:80 或类似值

还支持部分匹配、排序匹配等: fuzz.partial_ratio("天安门", "北京天安门广场") # 更关注子串匹配

3. 使用 sklearn 计算向量相似度(如余弦相似度)

对于文本向量化后的数据,常用 cosine_similarity 计算相似度。

示例:

from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity

texts = ["我喜欢编程", "我热爱写代码", "他喜欢打游戏"]

向量化

vectorizer = TfidfVectorizer() tfidf_matrix = vectorizer.fit_transform(texts)

计算相似度

sim = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2]) print(sim[0][0]) # 第一句和第二句的余弦相似度

4. 自定义杰卡德相似度(Jaccard Similarity)

适用于集合之间的相似性比较,比如分词后的文本。

示例:

def jaccard_similarity(a, b): set_a = set(a) set_b = set(b) intersection = set_a.intersection(set_b) union = set_a.union(set_b) return len(intersection) / len(union) if union else 0

sim = jaccard_similarity("我爱学习".split(), "我爱运动".split()) print(sim) # 输出:0.333...

基本上就这些常见的“similarity”实现方式。根据你的数据类型(字符串、文本、向量)选择合适的方法即可。注意:没有统一的 similarity 函数,需明确场景再选工具。

今天关于《Python相似度函数全解析》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

Golang容器自动部署与更新技巧Golang容器自动部署与更新技巧
上一篇
Golang容器自动部署与更新技巧
Win11手机连接PhoneLink教程详解
下一篇
Win11手机连接PhoneLink教程详解
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3180次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3391次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3420次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4526次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3800次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码