Pandas统计NaN浮点列差异方法
还在为Pandas DataFrame浮点数列比较时的精度问题和NaN值困扰吗?本文提供了一种高效且精准的解决方案,助力数据分析师轻松应对挑战。首先,利用`DataFrame.round()`方法处理浮点数精度,避免因细微差异导致的误判。其次,巧妙运用`DataFrame.compare()`方法,智能识别并统计两列之间的差异行数,尤其是在NaN值不应被视为差异的情况下,确保结果的准确性。通过本文的学习,你将掌握一套清晰、专业的Pandas技巧,显著提升数据比较的效率和可靠性,避免常见的数据分析陷阱,让数据洞察更加精准。立即学习,解锁Pandas数据比较的正确姿势!

浮点数比较与NaN值的挑战
在数据分析中,我们经常需要比较两个DataFrame中特定列的值。当这些列包含浮点数时,直接使用==进行比较往往会因为浮点数的精度问题而导致不准确的结果。例如,0.1 + 0.2可能不严格等于0.3。此外,如果列中包含NaN(Not a Number)值,默认情况下NaN == NaN的结果是False,这意味着两个DataFrame中相同位置的NaN值会被错误地计为差异,而这通常不是我们期望的行为。我们的目标是准确地找出那些数值上真正不同的行,同时忽略相同位置的NaN值。
解决方案概述
为了克服这些挑战,我们将采用两步策略:
- 处理浮点数精度: 在比较之前,对浮点数列进行适当的四舍五入,以消除微小的精度差异。
- 高效比较与NaN处理: 使用Pandas提供的DataFrame.compare()方法来比较两个DataFrame,该方法能够智能地处理NaN值,默认情况下不会将相同位置的NaN视为差异。
处理浮点数精度
浮点数在计算机内部的表示方式决定了它们可能无法精确表示所有十进制小数。因此,即使逻辑上相等的两个浮点数,在直接比较时也可能被判定为不相等。解决这个问题最简单有效的方法是对浮点数进行四舍五入到相同的有效小数位数。
import pandas as pd
# 示例数据
d1 = {"col": [7.1, 2.0, 3.0, 4.0, None, 1.9, 1.3]}
d2 = {"col": [7.1, 2.5, 3.0, 4.0, None, 1.2, None]}
df1 = pd.DataFrame(d1)
df2 = pd.DataFrame(d2)
print("原始DataFrame 1:")
print(df1)
print("\n原始DataFrame 2:")
print(df2)
# 对浮点数列进行四舍五入,例如保留4位小数
df1["col"] = df1["col"].round(4)
df2["col"] = df2["col"].round(4)
print("\n四舍五入后的DataFrame 1:")
print(df1)
print("\n四舍五入后的DataFrame 2:")
print(df2)通过round(decimal_places)方法,我们可以将浮点数调整到所需的精度。选择合适的精度至关重要,它应根据数据的特性和业务需求来确定。
使用DataFrame.compare()进行比较
pandas.DataFrame.compare()方法是比较两个DataFrame的强大工具。它返回一个DataFrame,其中只包含两个原始DataFrame中不同的行和列。更重要的是,它默认处理NaN值的方式正是我们所期望的:如果两个DataFrame在相同位置都包含NaN,compare()不会将其视为差异并包含在结果中。只有当一个位置的值在两个DataFrame中都存在且不相等,或者一个存在而另一个是NaN时,它才会被报告为差异。
# 使用 compare 方法找出差异
# 默认情况下,compare 会在两个值都为 NaN 时不报告差异
comparison = df1.compare(df2)
print("\n差异比较结果:")
print(comparison)
# 统计差异的行数
# comparison DataFrame 的每一行代表一个差异的行
different_rows_count = len(comparison)
print(f"\n不同的行数: {different_rows_count}")输出示例:
col self other 1 2.0 2.5 5 1.9 1.2 6 1.3 NaN 不同的行数: 3
从输出结果可以看出:
- 第1行(索引为1)df1['col']为2.0,df2['col']为2.5,两者不同,被报告。
- 第5行(索引为5)df1['col']为1.9,df2['col']为1.2,两者不同,被报告。
- 第6行(索引为6)df1['col']为1.3,df2['col']为NaN,两者不同,被报告。
- 第4行(索引为4)df1['col']为NaN,df2['col']为NaN,两者相同,未被报告为差异,这正是我们期望的行为。
注意事项与总结
- 精度选择: round()方法中的小数位数应根据实际业务场景和数据特性仔细选择。过高的精度可能无法解决浮点数问题,过低的精度可能丢失有效信息。
- compare()的灵活性: compare()方法还有其他参数,如align_axis和keep_equal,可以根据更复杂的比较需求进行调整。但对于本教程中的场景,默认行为已足够。
- NaN处理: compare()方法在处理NaN值时表现出良好的行为,它将相同位置的NaN视为“无差异”,这避免了手动处理NaN的复杂性。如果需要将NaN与非NaN的比较也视为“无差异”,则需要更复杂的逻辑,例如先填充NaN。
- 性能考量: 对于非常大的DataFrame,compare()方法通常是高效的,因为它利用了Pandas底层的优化。
通过结合使用DataFrame.round()来标准化浮点数精度和DataFrame.compare()来智能地识别差异(包括对NaN值的正确处理),我们可以有效地解决DataFrame中浮点数列的比较难题,从而得到准确的差异行计数。这种方法既专业又易于实施,是处理此类数据比较任务的推荐实践。
到这里,我们也就讲完了《Pandas统计NaN浮点列差异方法》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于的知识点!
Laravel关联模型唯一性加载技巧
- 上一篇
- Laravel关联模型唯一性加载技巧
- 下一篇
- HTML视频播放速度调整方法
-
- 文章 · python教程 | 3小时前 |
- Python如何重命名数据列名?columns教程
- 165浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- 异步Python机器人如何非阻塞运行?
- 216浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python排序忽略大小写技巧详解
- 325浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python列表引用与复制技巧
- 300浏览 收藏
-
- 文章 · python教程 | 4小时前 | 数据处理 流处理 PythonAPI PyFlink ApacheFlink
- PyFlink是什么?Python与Flink结合解析
- 385浏览 收藏
-
- 文章 · python教程 | 5小时前 | sdk 邮件API requests库 smtplib Python邮件发送
- Python发送邮件API调用方法详解
- 165浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Pandasmerge_asof快速匹配最近时间数据
- 254浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- 列表推导式与生成器表达式区别解析
- 427浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Pythonopen函数使用技巧详解
- 149浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Python合并多个列表的几种方法
- 190浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3191次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3403次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3434次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4541次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3812次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

