双向搜索算法实现与路径优化分析
本文深入探讨了Java中双向搜索算法的实现与路径分析,旨在帮助开发者理解并掌握这一高效的图搜索技术。通过剖析常见的实现错误,如共享搜索树和路径构建方向错误,并针对性地提出改进方案,详细阐述如何利用Java构建独立的双向搜索树,从而正确提取完整的路径信息。文章重点介绍了使用`searchTreeParentByChildFromStart`和`searchTreeParentByChildFromEnd`分别存储起点和终点的搜索树,以及如何通过`containsKey()`进行顶点访问检查,最终实现从起点到终点的完整路径搜索,为开发者提供清晰的实现思路和优化方向。

本文旨在帮助开发者理解和实现双向路径搜索算法。通过分析常见的实现错误,并提供改进方案,本文将详细介绍如何使用Java构建高效的双向搜索树,并从搜索树中正确提取完整的路径信息,最终实现从起点到终点的完整路径搜索。
理解双向路径搜索
双向路径搜索是一种在图中寻找从起点到终点路径的优化算法。它同时从起点和终点开始搜索,当两个搜索方向相遇时,就找到了连接起点和终点的路径。相比于单向搜索,双向搜索通常能够更快地找到目标路径,尤其是在搜索空间较大的情况下。
常见的实现错误
原始代码中存在一些关键问题,导致无法正确构建和使用双向搜索树:
- 共享搜索树: 使用单一的 searchTreeParentByChild 存储两个方向的搜索结果是不正确的。因为两个方向的路径是从不同的起点构建,并且方向相反。使用同一个树结构无法区分路径的方向。
- 路径构建方向错误: searchTreeParentByChild 只能从子节点追溯到父节点,而无法反向查找。这导致无法从相遇点正确构建从起点到终点的完整路径。
- containsValue 的错误使用: 在 curEnd 的循环中,使用 searchTreeParentByChild.containsValue(e.to()) 来判断顶点是否被访问过是错误的。containsValue 用于检查 Map 中是否存在特定的值,而不是键。正确的做法是使用 containsKey(e.to())。
改进的实现方案
为了解决上述问题,我们需要进行以下改进:
- 使用两个独立的搜索树: 为从起点和终点开始的搜索分别创建 searchTreeParentByChildFromStart 和 searchTreeParentByChildFromEnd。这两个 Map 分别存储从起点和从终点开始的搜索树。
- 正确的顶点访问检查: 使用 containsKey() 方法检查顶点是否已经被访问过。
- 完整路径构建: 当两个搜索方向相遇时,需要分别从相遇点向起点和终点追溯路径,然后将两条路径合并。
以下是改进后的 Java 代码示例:
import java.util.*;
public class BidirectionalSearch {
private final Graph graph;
private final Map<Vertex, Vertex> searchTreeParentByChildFromStart = new HashMap<>();
private final Map<Vertex, Vertex> searchTreeParentByChildFromEnd = new HashMap<>();
public BidirectionalSearch(Graph graph) {
this.graph = graph;
}
public BidirectionalSearch buildSearchTree(Vertex start, Vertex end) {
if (!graph.vertices().containsAll(List.of(start, end)))
throw new IllegalArgumentException("start or stop vertices not from this graph");
if (start.equals(end))
return this;
searchTreeParentByChildFromStart.clear();
searchTreeParentByChildFromEnd.clear();
Queue<Vertex> unvisitedVertexQueueFromStart = new ArrayDeque<>();
Queue<Vertex> unvisitedVertexQueueFromEnd = new ArrayDeque<>();
unvisitedVertexQueueFromStart.add(start);
unvisitedVertexQueueFromEnd.add(end);
searchTreeParentByChildFromStart.put(start, null);
searchTreeParentByChildFromEnd.put(end, null);
Vertex intersectionVertex = null;
while (!unvisitedVertexQueueFromStart.isEmpty() && !unvisitedVertexQueueFromEnd.isEmpty()) {
Vertex curStart = unvisitedVertexQueueFromStart.poll();
for (Edge e : curStart.edges()) {
Vertex neighbor = e.to();
if (!searchTreeParentByChildFromStart.containsKey(neighbor)) {
searchTreeParentByChildFromStart.put(neighbor, curStart);
unvisitedVertexQueueFromStart.add(neighbor);
if (searchTreeParentByChildFromEnd.containsKey(neighbor)) {
intersectionVertex = neighbor;
break; // Found intersection
}
}
}
if (intersectionVertex != null) break;
Vertex curEnd = unvisitedVertexQueueFromEnd.poll();
for (Edge e : curEnd.edges()) {
Vertex neighbor = e.to();
if (!searchTreeParentByChildFromEnd.containsKey(neighbor)) {
searchTreeParentByChildFromEnd.put(neighbor, curEnd);
unvisitedVertexQueueFromEnd.add(neighbor);
if (searchTreeParentByChildFromStart.containsKey(neighbor)) {
intersectionVertex = neighbor;
break; // Found intersection
}
}
}
if (intersectionVertex != null) break;
}
return this;
}
public List<Vertex> getPath(Vertex start, Vertex end) {
buildSearchTree(start, end);
Vertex intersection = findIntersection(start, end);
if (intersection == null) {
return Collections.emptyList(); // No path found
}
List<Vertex> pathToIntersectionFromStart = buildPath(searchTreeParentByChildFromStart, intersection);
List<Vertex> pathToIntersectionFromEnd = buildPath(searchTreeParentByChildFromEnd, intersection);
Collections.reverse(pathToIntersectionFromEnd); // Reverse the end path
List<Vertex> fullPath = new ArrayList<>();
fullPath.addAll(pathToIntersectionFromStart);
fullPath.addAll(pathToIntersectionFromEnd.subList(1, pathToIntersectionFromEnd.size())); // Avoid duplicate intersection vertex
return fullPath;
}
private Vertex findIntersection(Vertex start, Vertex end) {
for (Vertex vertex : searchTreeParentByChildFromStart.keySet()) {
if (searchTreeParentByChildFromEnd.containsKey(vertex)) {
return vertex;
}
}
return null;
}
private List<Vertex> buildPath(Map<Vertex, Vertex> searchTree, Vertex intersection) {
List<Vertex> path = new LinkedList<>();
Vertex current = intersection;
while (current != null) {
path.add(0, current); // Add to the beginning to reverse the path
current = searchTree.get(current);
}
return path;
}
// Example Graph, Vertex and Edge classes (replace with your actual implementations)
static class Graph {
private final Set<Vertex> vertices = new HashSet<>();
public void addVertex(Vertex vertex) {
vertices.add(vertex);
}
public Set<Vertex> vertices() {
return vertices;
}
}
static class Vertex {
private final String name;
private final List<Edge> edges = new ArrayList<>();
public Vertex(String name) {
this.name = name;
}
public String getName() {
return name;
}
public void addEdge(Edge edge) {
edges.add(edge);
}
public List<Edge> edges() {
return edges;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Vertex vertex = (Vertex) o;
return Objects.equals(name, vertex.name);
}
@Override
public int hashCode() {
return Objects.hash(name);
}
}
static class Edge {
private final Vertex from;
private final Vertex to;
private final int weight;
public Edge(Vertex from, Vertex to, int weight) {
this.from = from;
this.to = to;
this.weight = weight;
}
public Vertex to() {
return to;
}
}
public static void main(String[] args) {
// Example Usage
Graph graph = new Graph();
Vertex start = new Vertex("A");
Vertex b = new Vertex("B");
Vertex c = new Vertex("C");
Vertex end = new Vertex("D");
graph.addVertex(start);
graph.addVertex(b);
graph.addVertex(c);
graph.addVertex(end);
start.addEdge(new Edge(start, b, 1));
b.addEdge(new Edge(b, c, 1));
c.addEdge(new Edge(c, end, 1));
end.addEdge(new Edge(end, c, 1));
BidirectionalSearch search = new BidirectionalSearch(graph);
List<Vertex> path = search.getPath(start, end);
if (!path.isEmpty()) {
System.out.println("Path found: ");
for (Vertex vertex : path) {
System.out.print(vertex.getName() + " ");
}
System.out.println();
} else {
System.out.println("No path found.");
}
}
}代码解释:
- searchTreeParentByChildFromStart 和 searchTreeParentByChildFromEnd:分别存储从起点和终点开始的搜索树,记录每个节点的父节点。
- getPath(Vertex start, Vertex end): 构建搜索树,找到两个方向相遇的顶点,然后分别构建从起点到相遇点和从终点到相遇点的路径,最后合并这两条路径。
- buildPath(Map
searchTree, Vertex intersection): 从相遇点开始,通过搜索树向上追溯到起点或终点,构建单向路径。 - findIntersection(Vertex start, Vertex end): 找到两个搜索树的相交顶点。
注意事项
- 图的表示: 上述代码示例中使用了简单的 Graph, Vertex 和 Edge 类。在实际应用中,你需要根据你的图的结构来调整这些类的实现。
- 性能优化: 双向搜索的性能高度依赖于图的结构。在某些情况下,单向搜索可能更有效。可以考虑使用启发式函数来指导搜索方向,进一步优化性能。
- 路径权重: 上述代码只关注是否存在路径,没有考虑路径的权重。如果需要找到最短路径,需要修改代码,在搜索过程中维护每个节点的距离信息,并使用合适的优先队列(例如,使用 PriorityQueue)来选择下一个要访问的节点。
- 环路处理: 在构建搜索树时,需要小心处理环路,避免无限循环。可以使用一个额外的 visited 集合来记录已经访问过的节点。
总结
双向路径搜索是一种强大的图搜索算法,可以有效地找到起点和终点之间的路径。 通过使用两个独立的搜索树,并正确地构建和合并路径,可以避免常见的实现错误,获得正确的搜索结果。 在实际应用中,需要根据图的结构和性能需求,对算法进行适当的优化。
今天关于《双向搜索算法实现与路径优化分析》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于的内容请关注golang学习网公众号!
神马搜索翻译历史管理与常用语保存技巧
- 上一篇
- 神马搜索翻译历史管理与常用语保存技巧
- 下一篇
- Excel数据分组与分级显示技巧
-
- 文章 · java教程 | 3分钟前 |
- Java字符串按固定长度分组加空格技巧
- 272浏览 收藏
-
- 文章 · java教程 | 12分钟前 |
- JTable数据模型详解:异构列管理教程
- 320浏览 收藏
-
- 文章 · java教程 | 18分钟前 |
- JavaDelayQueue延迟队列实现解析
- 474浏览 收藏
-
- 文章 · java教程 | 24分钟前 |
- JUnit5assertThat方法详解与使用教程
- 335浏览 收藏
-
- 文章 · java教程 | 55分钟前 |
- Java环境搭建指南:JDK与IDE安装步骤
- 441浏览 收藏
-
- 文章 · java教程 | 1小时前 |
- 解压JDK如何配置环境变量?
- 366浏览 收藏
-
- 文章 · java教程 | 1小时前 |
- Java开发投票评分系统教程实战
- 221浏览 收藏
-
- 文章 · java教程 | 1小时前 |
- KafkaConnectSinkTask隔离与对象管理解析
- 226浏览 收藏
-
- 文章 · java教程 | 1小时前 |
- Java接口回调解耦技巧分享
- 224浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3186次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3398次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3429次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4535次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3807次使用
-
- 提升Java功能开发效率的有力工具:微服务架构
- 2023-10-06 501浏览
-
- 掌握Java海康SDK二次开发的必备技巧
- 2023-10-01 501浏览
-
- 如何使用java实现桶排序算法
- 2023-10-03 501浏览
-
- Java开发实战经验:如何优化开发逻辑
- 2023-10-31 501浏览
-
- 如何使用Java中的Math.max()方法比较两个数的大小?
- 2023-11-18 501浏览

