当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 机器学习回归模型相关重要知识点总结

机器学习回归模型相关重要知识点总结

来源:51CTO.COM 2023-04-16 18:51:02 0浏览 收藏

编程并不是一个机械性的工作,而是需要有思考,有创新的工作,语法是固定的,但解决问题的思路则是依靠人的思维,这就需要我们坚持学习和更新自己的知识。今天golang学习网就整理分享《机器学习回归模型相关重要知识点总结》,文章讲解的知识点主要包括,如果你对科技周边方面的知识点感兴趣,就不要错过golang学习网,在这可以对大家的知识积累有所帮助,助力开发能力的提升。

​1、线性回归的假设是什么?

线性回归有四个假设:

  • 线性:自变量(x)和因变量(y)之间应该存在线性关系,这意味着x值的变化也应该在相同方向上改变y值。
  • 独立性:特征应该相互独立,这意味着最小的多重共线性。
  • 正态性:残差应该是正态分布的。
  • 同方差性:回归线周围数据点的方差对于所有值应该相同。

2、什么是残差,它如何用于评估回归模型?

残差是指预测值与观测值之间的误差。它测量数据点与回归线的距离。它是通过从观察值中减去预测值的计算机。

残差图是评估回归模型的好方法。它是一个图表,在垂直轴上显示所有残差,在 x 轴上显示特征。如果数据点随机散布在没有图案的线上,那么线性回归模型非常适合数据,否则我们应该使用非线性模型。

图片

3、如何区分线性回归模型和非线性回归模型?

两者都是回归问题的类型。两者的区别在于他们训练的数据。

线性回归模型假设特征和标签之间存在线性关系,这意味着如果我们获取所有数据点并将它们绘制成线性(直线)线应该适合数据。

非线性回归模型假设变量之间没有线性关系。非线性(曲线)线应该能够正确地分离和拟合数据。

机器学习回归模型相关重要知识点总结

找出数据是线性还是非线性的三种最佳方法 -

  1. 残差图
  2. 散点图
  3. 假设数据是线性的,训练一个线性模型并通过准确率进行评估。

4、什么是多重共线性,它如何影响模型性能?

当某些特征彼此高度相关时,就会发生多重共线性。相关性是指表示一个变量如何受到另一个变量变化影响的度量。

如果特征 a 的增加导致特征 b 的增加,那么这两个特征是正相关的。如果 a 的增加导致特征 b 的减少,那么这两个特征是负相关的。在训练数据上有两个高度相关的变量会导致多重共线性,因为它的模型无法在数据中找到模式,从而导致模型性能不佳。所以在训练模型之前首先要尽量消除多重共线性。

5、异常值如何影响线性回归模型的性能?

异常值是值与数据点的平均值范围不同的数据点。换句话说,这些点与数据不同或在第 3 标准之外。

机器学习回归模型相关重要知识点总结

线性回归模型试图找到一条可以减少残差的最佳拟合线。如果数据包含异常值,则最佳拟合线将向异常值移动一点,从而增加错误率并得出具有非常高 MSE 的模型。

6、什么是 MSE 和 MAE 有什么区别?

MSE 代表均方误差,它是实际值和预测值之间的平方差。而 MAE 是目标值和预测值之间的绝对差。

MSE 会惩罚大错误,而 MAE 不会。随着 MSE 和 MAE 的值都降低,模型趋向于一条更好的拟合线。

7、L1 和 L2 正则化是什么,应该在什么时候使用?

在机器学习中,我们的主要目标是创建一个可以在训练和测试数据上表现更好的通用模型,但是在数据非常少的情况下,基本的线性回归模型往往会过度拟合,因此我们会使用 l1 和l2 正则化。

L1 正则化或 lasso 回归通过在成本函数内添加添加斜率的绝对值作为惩罚项。有助于通过删除斜率值小于阈值的所有数据点来去除异常值。

L2 正则化或ridge 回归增加了相当于系数大小平方的惩罚项。它会惩罚具有较高斜率值的特征。

l1 和 l2 在训练数据较少、方差高、预测特征大于观察值以及数据存在多重共线性的情况下都很有用。

8、异方差是什么意思?

它是指最佳拟合线周围的数据点的方差在一个范围内不一样的情况。它导致残差的不均匀分散。如果它存在于数据中,那么模型倾向于预测无效输出。检验异方差的最好方法之一是绘制残差图。

数据内部异方差的最大原因之一是范围特征之间的巨大差异。例如,如果我们有一个从 1 到 100000 的列,那么将值增加 10% 不会改变较低的值,但在较高的值时则会产生非常大的差异,从而产生很大的方差差异的数据点。

9、方差膨胀因子的作用是什么的作用是什么?

方差膨胀因子(vif)用于找出使用其他自变量可预测自变量的程度。

让我们以具有 v1、v2、v3、v4、v5 和 v6 特征的示例数据为例。现在,为了计算 v1 的 vif,将其视为一个预测变量,并尝试使用所有其他预测变量对其进行预测。

如果 VIF 的值很小,那么最好从数据中删除该变量。因为较小的值表示变量之间的高相关性。

10、逐步回归(stepwise regression)如何工作?

逐步回归是在假设检验的帮助下,通过移除或添加预测变量来创建回归模型的一种方法。它通过迭代检验每个自变量的显著性来预测因变量,并在每次迭代之后删除或添加一些特征。它运行n次,并试图找到最佳的参数组合,以预测因变量的观测值和预测值之间的误差最小。

它可以非常高效地管理大量数据,并解决高维问题。

11、除了MSE 和 MAE 外回归还有什么重要的指标吗?

图片

我们用一个回归问题来介绍这些指标,我们的其中输入是工作经验,输出是薪水。下图显示了为预测薪水而绘制的线性回归线。

图片

1、平均绝对误差(MAE):

图片

平均绝对误差 (MAE) 是最简单的回归度量。它将每个实际值和预测值的差值相加,最后除以观察次数。为了使回归模型被认为是一个好的模型,MAE 应该尽可能小。

MAE的优点是:

简单易懂。结果将具有与输出相同的单位。例如:如果输出列的单位是 LPA,那么如果 MAE 为 1.2,那么我们可以解释结果是 +1.2LPA 或 -1.2LPA,MAE 对异常值相对稳定(与其他一些回归指标相比,MAE 受异常值的影响较小)。

MAE的缺点是:

MAE使用的是模函数,但模函数不是在所有点处都可微的,所以很多情况下不能作为损失函数。

2、均方误差(MSE):

图片

MSE取每个实际值和预测值之间的差值,然后将差值平方并将它们相加,最后除以观测数量。为了使回归模型被认为是一个好的模型,MSE 应该尽可能小。

MSE的优点:平方函数在所有点上都是可微的,因此它可以用作损失函数。

MSE的缺点:由于 MSE 使用平方函数,结果的单位是输出的平方。因此很难解释结果。由于它使用平方函数,如果数据中有异常值,则差值也会被平方,因此,MSE 对异常值不稳定。

3、均方根误差 (RMSE):

图片

均方根误差(RMSE)取每个实际值和预测值之间的差值,然后将差值平方并将它们相加,最后除以观测数量。然后取结果的平方根。因此,RMSE 是 MSE 的平方根。为了使回归模型被认为是一个好的模型,RMSE 应该尽可能小。

RMSE 解决了 MSE 的问题,单位将与输出的单位相同,因为它取平方根,但仍然对异常值不那么稳定。

上述指标取决于我们正在解决的问题的上下文, 我们不能在不了解实际问题的情况下,只看 MAE、MSE 和 RMSE 的值来判断模型的好坏。

4、R2 score:

图片

如果我们没有任何输入数据,但是想知道他在这家公司能拿到多少薪水,那么我们能做的最好的事情就是给他们所有员工薪水的平均值。

图片

R2 score 给出的值介于 0 到 1 之间,可以针对任何上下文进行解释。它可以理解为是拟合度的好坏。

SSR 是回归线的误差平方和,SSM 是均线误差的平方和。我们将回归线与平均线进行比较。

图片

  • 如果 R2 得分为 0,则意味着我们的模型与平均线的结果是相同的,因此需要改进我们的模型。
  • 如果 R2 得分为 1,则等式的右侧部分变为 0,这只有在我们的模型适合每个数据点并且没有出现误差时才会发生。
  • 如果 R2 得分为负,则表示等式右侧大于 1,这可能发生在 SSR > SSM 时。这意味着我们的模型比平均线最差,也就是说我们的模型还不如取平均数进行预测

如果我们模型的 R2 得分为 0.8,这意味着可以说模型能够解释 80% 的输出方差。也就是说,80%的工资变化可以用输入(工作年限)来解释,但剩下的20%是未知的。

如果我们的模型有2个特征,工作年限和面试分数,那么我们的模型能够使用这两个输入特征解释80%的工资变化。

R2的缺点:

随着输入特征数量的增加,R2会趋于相应的增加或者保持不变,但永远不会下降,即使输入特征对我们的模型不重要(例如,将面试当天的气温添加到我们的示例中,R2是不会下降的即使温度对输出不重要)。

5、Adjusted R2 score:

上式中R2为R2,n为观测数(行),p为独立特征数。Adjusted R2解决了R2的问题。

当我们添加对我们的模型不那么重要的特性时,比如添加温度来预测工资.....

图片

当添加对模型很重要的特性时,比如添加面试分数来预测工资……

图片

以上就是回归问题的重要知识点和解决回归问题使用的各种重要指标的介绍及其优缺点,希望对你有所帮助。

到这里,我们也就讲完了《机器学习回归模型相关重要知识点总结》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于算法,机器学习,模型的知识点!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
再记公式弱爆了!用ChatGPT处理Excel问题,效率狂升再记公式弱爆了!用ChatGPT处理Excel问题,效率狂升
上一篇
再记公式弱爆了!用ChatGPT处理Excel问题,效率狂升
如何在 Apple Watch 上从 watchOS beta 切换到稳定版
下一篇
如何在 Apple Watch 上从 watchOS beta 切换到稳定版
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    509次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • AI边界平台:智能对话、写作、画图,一站式解决方案
    边界AI平台
    探索AI边界平台,领先的智能AI对话、写作与画图生成工具。高效便捷,满足多样化需求。立即体验!
    377次使用
  • 讯飞AI大学堂免费AI认证证书:大模型工程师认证,提升您的职场竞争力
    免费AI认证证书
    科大讯飞AI大学堂推出免费大模型工程师认证,助力您掌握AI技能,提升职场竞争力。体系化学习,实战项目,权威认证,助您成为企业级大模型应用人才。
    387次使用
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    531次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    631次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    539次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码