当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 神还原物体复杂、高频细节,4K-NeRF高保真视图合成来了

神还原物体复杂、高频细节,4K-NeRF高保真视图合成来了

来源:51CTO.COM 2023-04-27 11:39:33 0浏览 收藏

珍惜时间,勤奋学习!今天给大家带来《神还原物体复杂、高频细节,4K-NeRF高保真视图合成来了》,正文内容主要涉及到等等,如果你正在学习科技周边,或者是对科技周边有疑问,欢迎大家关注我!后面我会持续更新相关内容的,希望都能帮到正在学习的大家!

超高分辨率作为记录和显示高质量图像、视频的一种标准受到众多研究者的欢迎,与较低分辨率(1K 高清格式)相比,高分辨率捕获的场景通常细节十分清晰,像素的信息被一个个小 patch 放大。但是,想要将这种技术应用于图像处理和计算机视觉还面临很多挑战。

本文中,来自阿里巴巴的研究者专注于新的视图合成任务,提出了一个名为 4K-NeRF 的框架,其基于 NeRF 的体积渲染方法可以实现在 4K 超高分辨率下高保真视图合成。

图片

论文地址:https://arxiv.org/abs/2212.04701

项目主页:https://github.com/frozoul/4K-NeRF

话不多说,我们先来看看效果(以下视频均进行了降采样处理,原版 4K 视频请参考原项目)。

方法

接下来我们来看看该研究是如何实现的。

4K-NeRF pipeline(如下图):使用基于 patch 的射线采样技术,联合训练 VC-Encoder(View-Consistent)(基于 DEVO)在一个较低分辨率的空间中编码三维几何信息,之后经过一个 VC-Decoder 实现针对高频细高质量的渲染与视图一致性的增强。

图片

该研究基于 DVGO [32] 中定义的公式实例化编码器,学习到的基于体素网格的表示来显式地编码几何结构:

图片

对于每个采样点,密度估计的三线性插值配备了一个 softplus 激活函数用于生成该点的体密度值:

图片

颜色则是用一个小型的 MLP 估计算:

图片

这样可以通过累积沿着设线 r 的采样点的特征来得到每个射线(或像素)的特征值:

图片

为了更好地利用嵌入在 VC-Encoder 中的几何属性,该研究还通过估计每条射线 r 沿采样射线轴的深度生成了一个深度图。估计的深度图为上面 Encoder 生成的场景三维结构提供了强有力的指导:

图片

之后经过的网络是通过叠加几个卷积块(既不使用非参数归一化,也不使用降采样操作)和交错的升采样操作来建立的。特别是,该研究不是简单地将特征 F 和深度图 M 连接起来,而是加入了深度图中的深度信号,并通过学习变换将其注入每个块来调制块激活。

图片

不同于传统的 NeRF 方法中的像素级机制,该研究的方法旨在捕获射线(像素)之间的空间信息。因此,这里不适合采用 NeRF 中随机射线采样的策略。因此该研究提出了一种基于 patch 的射线采样训练策略,以方便捕获射线特征之间的空间依赖性。训练中,首先将训练视图的图像分割成大小为 N_p×N_p 的 patch p,以确保像素上的采样概率是均匀的。当图像空间维数不能被 patch 大小精确分割时,需要截断 patch 直到边缘,得到一组训练 patch。然后从集合中随机抽取一个 (或多个) patch,通过 patch 中像素的射线形成每次迭代的 mini-batch。

为了解决对精细细节产生模糊或过度平滑视觉效果的问题,该研究添加了对抗性损失和感知损失来规范精细细节合成。感知损失图片通过预先训练的 19 层 VGG 网络来估计特征空间中预测的 patch图片和真值 p 之间的相似性:

图片

该研究使用图片损失而不是 MSE 来监督高频细节的重建

图片

此外,该研究还添加了一个辅助 MSE 损失,最后总的 loss 函数形式如下:

图片

实验效果

定性分析

实验对 4K-NeRF 与其他模型进行了比较,可以看到基于普通 NeRF 的方法有着不同程度的细节丢失、模糊现象。相比之下,4K-NeRF 在这些复杂和高频细节上呈现了高质量的逼真渲染,即使是在训练视野有限的场景上。

图片

图片

定量分析

该研究与目前几个方法在 4k 数据的基准下去做对比,包括 Plenoxels、DVGO、JaxNeRF、MipNeRF-360 和 NeRF-SR。实验不但以图像恢复的评价指标作为对比,还提供了推理时间和缓存内存,以供全面评估参考。结果如下:

图片

虽然与一些方法的结果在一些指标上相差不大,但是得益于他们基于体素的方法在推理效率和内存成本上都取得了惊人的性能,允许在 300 ms 内渲染一个 4K 图像。

图片

总结及未来展望

该研究探讨了 NeRF 在精细细节建模方面的能力,提出了一个新颖的框架来增强其在以极高分辨率的场景中恢复视图一致的细微细节的表现力。此外,该研究还引入了一对保持几何一致性的编解码器模块,在较低的空间中有效地建模几何性质,并利用几何感知特征之间的局部相关性实现全尺度空间中的视图一致性的增强,并且基于 patch 的抽样训练框架也允许该方法集成来自面向感知的正则化的监督。该研究希望将框架合并到动态场景建模中的效果,以及神经渲染任务作为未来的方向。

今天关于《神还原物体复杂、高频细节,4K-NeRF高保真视图合成来了》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
Microsoft 发布适用于 Windows 7 (KB5011552) 和 8.1 (KB5011564) 的补丁星期二更新Microsoft 发布适用于 Windows 7 (KB5011552) 和 8.1 (KB5011564) 的补丁星期二更新
上一篇
Microsoft 发布适用于 Windows 7 (KB5011552) 和 8.1 (KB5011564) 的补丁星期二更新
黑客如何使用AI和ML来瞄准企业
下一篇
黑客如何使用AI和ML来瞄准企业
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    102次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    96次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    115次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    106次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    107次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码