PyTorch 并行训练 DistributedDataParallel 完整代码示例
你在学习科技周边相关的知识吗?本文《PyTorch 并行训练 DistributedDataParallel 完整代码示例》,主要介绍的内容就涉及到,如果你想提升自己的开发能力,就不要错过这篇文章,大家要知道编程理论基础和实战操作都是不可或缺的哦!
使用大型数据集训练大型深度神经网络 (DNN) 的问题是深度学习领域的主要挑战。 随着 DNN 和数据集规模的增加,训练这些模型的计算和内存需求也会增加。 这使得在计算资源有限的单台机器上训练这些模型变得困难甚至不可能。 使用大型数据集训练大型 DNN 的一些主要挑战包括:
- 训练时间长:训练过程可能需要数周甚至数月才能完成,具体取决于模型的复杂性和数据集的大小。
- 内存限制:大型 DNN 可能需要大量内存来存储训练期间的所有模型参数、梯度和中间激活。 这可能会导致内存不足错误并限制可在单台机器上训练的模型的大小。
为了应对这些挑战,已经开发了各种技术来扩大具有大型数据集的大型 DNN 的训练,包括模型并行性、数据并行性和混合并行性,以及硬件、软件和算法的优化。
在本文中我们将演示使用 PyTorch 的数据并行性和模型并行性。

我们所说的并行性一般是指在多个gpu,或多台机器上训练深度神经网络(dnn),以实现更少的训练时间。数据并行背后的基本思想是将训练数据分成更小的块,让每个GPU或机器处理一个单独的数据块。然后将每个节点的结果组合起来,用于更新模型参数。在数据并行中,模型体系结构在每个节点上是相同的,但模型参数在节点之间进行了分区。每个节点使用分配的数据块训练自己的本地模型,在每次训练迭代结束时,模型参数在所有节点之间同步。这个过程不断重复,直到模型收敛到一个令人满意的结果。
下面我们用用ResNet50和CIFAR10数据集来进行完整的代码示例:
在数据并行中,模型架构在每个节点上保持相同,但模型参数在节点之间进行了分区,每个节点使用分配的数据块训练自己的本地模型。
PyTorch的DistributedDataParallel 库可以进行跨节点的梯度和模型参数的高效通信和同步,实现分布式训练。本文提供了如何使用ResNet50和CIFAR10数据集使用PyTorch实现数据并行的示例,其中代码在多个gpu或机器上运行,每台机器处理训练数据的一个子集。训练过程使用PyTorch的DistributedDataParallel 库进行并行化。
导入必须要的库
import os from datetime import datetime from time import time import argparse import torchvision import torchvision.transforms as transforms import torch import torch.nn as nn import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel
接下来,我们将检查GPU。
import subprocess result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE) print(result.stdout.decode())
因为我们需要在多个服务器上运行,所以手动一个一个执行并不现实,所以需要有一个调度程序。这里我们使用SLURM文件来运行代码(slurm面向Linux和Unix类似内核的免费和开源工作调度程序),
def main():
# get distributed configuration from Slurm environment
parser = argparse.ArgumentParser()
parser.add_argument('-b', '--batch-size', default=128, type =int,
help='batch size. it will be divided in mini-batch for each worker')
parser.add_argument('-e','--epochs', default=2, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-c','--checkpoint', default=None, type=str,
help='path to checkpoint to load')
args = parser.parse_args()
rank = int(os.environ['SLURM_PROCID'])
local_rank = int(os.environ['SLURM_LOCALID'])
size = int(os.environ['SLURM_NTASKS'])
master_addr = os.environ["SLURM_SRUN_COMM_HOST"]
port = "29500"
node_id = os.environ['SLURM_NODEID']
ddp_arg = [rank, local_rank, size, master_addr, port, node_id]
train(args, ddp_arg)然后,我们使用DistributedDataParallel 库来执行分布式训练。
def train(args, ddp_arg):
rank, local_rank, size, MASTER_ADDR, port, NODE_ID = ddp_arg
# display info
if rank == 0:
#print(">>> Training on ", len(hostnames), " nodes and ", size, " processes, master node is ", MASTER_ADDR)
print(">>> Training on ", size, " GPUs, master node is ", MASTER_ADDR)
#print("- Process {} corresponds to GPU {} of node {}".format(rank, local_rank, NODE_ID))
print("- Process {} corresponds to GPU {} of node {}".format(rank, local_rank, NODE_ID))
# configure distribution method: define address and port of the master node and initialise communication backend (NCCL)
#dist.init_process_group(backend='nccl', init_method='env://', world_size=size, rank=rank)
dist.init_process_group(
backend='nccl',
init_method='tcp://{}:{}'.format(MASTER_ADDR, port),
world_size=size,
rank=rank
)
# distribute model
torch.cuda.set_device(local_rank)
gpu = torch.device("cuda")
#model = ResNet18(classes=10).to(gpu)
model = torchvision.models.resnet50(pretrained=False).to(gpu)
ddp_model = DistributedDataParallel(model, device_ids=[local_rank])
if args.checkpoint is not None:
map_location = {'cuda:%d' % 0: 'cuda:%d' % local_rank}
ddp_model.load_state_dict(torch.load(args.checkpoint, map_location=map_location))
# distribute batch size (mini-batch)
batch_size = args.batch_size
batch_size_per_gpu = batch_size // size
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(ddp_model.parameters(), 1e-4)
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
# load data with distributed sampler
#train_dataset = torchvision.datasets.CIFAR10(root='./data',
# train=True,
# transform=transform_train,
# download=False)
# load data with distributed sampler
train_dataset = torchvision.datasets.CIFAR10(root='./data',
train=True,
transform=transform_train,
download=False)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset,
num_replicas=size,
rank=rank)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size_per_gpu,
shuffle=False,
num_workers=0,
pin_memory=True,
sampler=train_sampler)
# training (timers and display handled by process 0)
if rank == 0: start = datetime.now()
total_step = len(train_loader)
for epoch in range(args.epochs):
if rank == 0: start_dataload = time()
for i, (images, labels) in enumerate(train_loader):
# distribution of images and labels to all GPUs
images = images.to(gpu, non_blocking=True)
labels = labels.to(gpu, non_blocking=True)
if rank == 0: stop_dataload = time()
if rank == 0: start_training = time()
# forward pass
outputs = ddp_model(images)
loss = criterion(outputs, labels)
# backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if rank == 0: stop_training = time()
if (i + 1) % 10 == 0 and rank == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Time data load: {:.3f}ms, Time training: {:.3f}ms'.format(epoch + 1, args.epochs,
i + 1, total_step, loss.item(), (stop_dataload - start_dataload)*1000,
(stop_training - start_training)*1000))
if rank == 0: start_dataload = time()
#Save checkpoint at every end of epoch
if rank == 0:
torch.save(ddp_model.state_dict(), './checkpoint/{}GPU_{}epoch.checkpoint'.format(size, epoch+1))
if rank == 0:
print(">>> Training complete in: " + str(datetime.now() - start))
if __name__ == '__main__':
main()代码将数据和模型分割到多个gpu上,并以分布式的方式更新模型。下面是代码的一些解释:
train(args, ddp_arg)有两个参数,args和ddp_arg,其中args是传递给脚本的命令行参数,ddp_arg包含分布式训练相关参数。
rank, local_rank, size, MASTER_ADDR, port, NODE_ID = ddp_arg:解包ddp_arg中分布式训练相关参数。
如果rank为0,则打印当前使用的gpu数量和主节点IP地址信息。
dist.init_process_group(backend='nccl', init_method='tcp://{}:{}'.format(MASTER_ADDR, port), world_size=size, rank=rank) :使用NCCL后端初始化分布式进程组。
torch.cuda.set_device(local_rank):为这个进程选择指定的GPU。
model = torchvision.models. ResNet50 (pretrained=False).to(gpu):从torchvision模型中加载ResNet50模型,并将其移动到指定的gpu。
ddp_model = DistributedDataParallel(model, device_ids=[local_rank]):将模型包装在DistributedDataParallel模块中,也就是说这样我们就可以进行分布式训练了
加载CIFAR-10数据集并应用数据增强转换。
train_sampler=torch.utils.data.distributed.DistributedSampler(train_dataset,num_replicas=size,rank=rank):创建一个DistributedSampler对象,将数据集分割到多个gpu上。
train_loader =torch.utils.data.DataLoader(dataset=train_dataset,batch_size=batch_size_per_gpu,shuffle=False,num_workers=0,pin_memory=True,sampler=train_sampler):创建一个DataLoader对象,数据将批量加载到模型中,这与我们平常训练的步骤是一致的只不过是增加了一个分布式的数据采样DistributedSampler。
为指定的epoch数训练模型,以分布式的方式使用optimizer.step()更新权重。
rank0在每个轮次结束时保存一个检查点。
rank0每10个批次显示损失和训练时间。
结束训练时打印训练模型所花费的总时间也是在rank0上。
代码测试
在使用1个节点1/2/3/4个gpu, 2个节点6/8个gpu,每个节点3/4个gpu上进行了训练Cifar10上的Resnet50的测试如下图所示,每次测试的批处理大小保持不变。完成每项测试所花费的时间以秒为单位记录。随着使用的gpu数量的增加,完成测试所需的时间会减少。当使用8个gpu时,需要320秒才能完成,这是记录中最快的时间。这是肯定的,但是我们可以看到训练的速度并没有像GPU数量增长呈现线性的增长,这可能是因为Resnet50算是一个比较小的模型了,并不需要进行并行化训练。

在多个gpu上使用数据并行可以显著减少在给定数据集上训练深度神经网络(DNN)所需的时间。随着gpu数量的增加,完成训练过程所需的时间减少,这表明DNN可以更有效地并行训练。
这种方法在处理大型数据集或复杂的DNN架构时特别有用。通过利用多个gpu,可以加快训练过程,实现更快的模型迭代和实验。但是需要注意的是,通过Data Parallelism实现的性能提升可能会受到通信开销和GPU内存限制等因素的限制,需要仔细调优才能获得最佳结果。
今天关于《PyTorch 并行训练 DistributedDataParallel 完整代码示例》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于深度学习,数据集的内容请关注golang学习网公众号!
微软:最新的 Windows Server build 25075 让暴力破解变得超级具有挑战性
- 上一篇
- 微软:最新的 Windows Server build 25075 让暴力破解变得超级具有挑战性
- 下一篇
- AirPlay 支持将于今年晚些时候为 Cisco 的 Webex 设备提供
-
- 科技周边 · 人工智能 | 9小时前 |
- 爆款AI视频生成器免费入口推荐
- 117浏览 收藏
-
- 科技周边 · 人工智能 | 9小时前 |
- Kling物理模拟教程:真实交互设置详解
- 477浏览 收藏
-
- 科技周边 · 人工智能 | 10小时前 |
- Deepseek满血版与AIPRM对话优化对比
- 217浏览 收藏
-
- 科技周边 · 人工智能 | 11小时前 |
- AIOverviews生成教程与实用技巧
- 458浏览 收藏
-
- 科技周边 · 人工智能 | 11小时前 |
- ChatGPT国内注册方法及最新流程详解
- 246浏览 收藏
-
- 科技周边 · 人工智能 | 11小时前 |
- 豆包网页版入口与使用教程
- 329浏览 收藏
-
- 科技周边 · 人工智能 | 12小时前 |
- 文心一言对话生成器官网入口
- 395浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3212次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3425次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3455次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4564次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3832次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览

