Python多列唯一值统计技巧
**Python多列唯一值统计方法:利用Pandas高效透视数据** 在数据分析中,针对DataFrame多列进行唯一值统计是常见需求。本文聚焦于利用Python的Pandas库,讲解如何高效统计DataFrame中某一列的唯一值在其他列组合下的计数情况。我们将深入探讨`groupby()`和`unstack()`函数的巧妙结合,实现数据透视,并以清晰的表格形式呈现结果。通过详细的代码示例,读者将掌握这种实用的数据处理技巧,例如统计不同用户在不同产品上的购买次数,或不同地区不同时间段的销售额。掌握此方法,能显著提高数据分析效率,为后续的数据分析和决策提供有力支持。

本文旨在讲解如何利用Python的pandas库,针对DataFrame中的多个列,统计其中一列的唯一值在其他列组合下的计数情况。通过groupby()和unstack()函数的巧妙结合,可以高效地实现数据透视,并将结果以清晰易懂的表格形式呈现。本文将提供详细的代码示例和解释,帮助读者掌握这种实用的数据处理技巧。
在数据分析中,经常需要统计某个列的唯一值在其他列不同组合下的计数。例如,我们可能想知道不同用户在不同产品上的购买次数,或者不同地区不同时间段的销售额。Pandas 提供了强大的 groupby() 和 unstack() 函数,可以方便地实现这种数据透视功能。
基本思路
- 分组 (groupby): 首先,使用 groupby() 函数按照需要进行统计的多个列进行分组。
- 计数 (size): 然后,使用 size() 函数计算每个分组的大小,即每个分组中记录的数量。
- 取消堆叠 (unstack): 最后,使用 unstack() 函数将其中一个分组列转换为列索引,从而实现数据透视的效果。fill_value=0 参数可以处理缺失值,将其填充为 0。
- 重置索引 (reset_index): 使用 reset_index() 函数将层级索引转换为普通的列。
代码示例
假设我们有以下 DataFrame:
import pandas as pd
df = pd.DataFrame({
'player': ['A', 'A', 'B', 'B', 'C', 'D'],
'team': ['tmX', 'tmX', 'tmX', 'tmX', 'tmY', 'tmY'],
'result': ['hit', 'hit', 'hit', 'miss', 'miss', 'hit']
})
print(df)输出:
player team result 0 A tmX hit 1 A tmX hit 2 B tmX hit 3 B tmX miss 4 C tmY miss 5 D tmY hit
我们想要统计每个球员 (player) 在每个队伍 (team) 中 "hit" 和 "miss" 的次数。可以使用以下代码:
new_df = (
df.groupby(['player', 'team', 'result'])
.size()
.unstack(level=2, fill_value=0)
.reset_index()
)
print(new_df)输出:
result player team hit miss 0 A tmX 2 0 1 B tmX 1 1 2 C tmY 0 1 3 D tmY 1 0
代码解释
- df.groupby(['player', 'team', 'result']): 按照 'player'、'team' 和 'result' 列进行分组。
- .size(): 计算每个分组的大小。
- .unstack(level=2, fill_value=0): 将 'result' 列取消堆叠,将其中的唯一值("hit" 和 "miss")转换为列索引。level=2 指定了要取消堆叠的层级,fill_value=0 用 0 填充缺失值。
- .reset_index(): 将索引重置为默认的整数索引。
注意事项
- unstack() 函数中的 level 参数指定了要取消堆叠的层级。如果需要取消堆叠多个层级,可以传递一个层级列表。
- fill_value 参数用于填充缺失值。如果不指定该参数,缺失值将显示为 NaN。
- 在实际应用中,可以根据具体需求调整分组列和取消堆叠的列。
总结
通过结合 groupby() 和 unstack() 函数,我们可以方便地实现基于多个列进行唯一值计数的数据透视。这种方法可以帮助我们更好地理解数据的分布和关系,为后续的数据分析和决策提供支持。掌握这种数据处理技巧,能够显著提高数据分析的效率和质量。
终于介绍完啦!小伙伴们,这篇关于《Python多列唯一值统计技巧》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!
QQ邮箱格式恢复步骤及找回教程
- 上一篇
- QQ邮箱格式恢复步骤及找回教程
- 下一篇
- Golang集成机器学习,Gorgonia与GoML配置教程
-
- 文章 · python教程 | 23分钟前 |
- Python多线程GIL详解与影响分析
- 322浏览 收藏
-
- 文章 · python教程 | 51分钟前 | 游戏开发 Pygame 碰撞检测 Python飞机大战 精灵组
- Python飞机大战小游戏开发教程
- 147浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python画皮卡丘教程及代码分享
- 397浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python3数组旋转算法详解
- 173浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PythonSeries方法详解与实战技巧
- 113浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pydantic字段不可变性实现方法
- 485浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python字符串替换实用技巧分享
- 326浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python日期格式解析与验证技巧
- 220浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- PythonOpenCV像素操作教程
- 362浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python条件优化:告别嵌套if-else陷阱
- 147浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Pandas与NumPyNaN查找区别详解
- 278浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3172次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3383次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3412次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4517次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3792次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

