当前位置:首页 > 文章列表 > 文章 > python教程 > Python快速匹配两个DataFrame方法

Python快速匹配两个DataFrame方法

2025-10-08 11:09:32 0浏览 收藏

学习文章要努力,但是不要急!今天的这篇文章《Python如何匹配两个DataFrame数据》将会介绍到等等知识点,如果你想深入学习文章,可以关注我!我会持续更新相关文章的,希望对大家都能有所帮助!

如何在Python中匹配不同DataFrame中的值

本文介绍如何使用 Pandas 库在 Python 中匹配不同 DataFrame 中的值,特别是当这些 DataFrame 包含具有不同 ID 但其他信息(如用户名)相同的数据时。通过 pd.merge() 函数,我们可以基于共同列将多个 DataFrame 合并为一个,从而实现高效的数据匹配和转换。本文将提供详细的代码示例,帮助你理解和应用这种方法解决实际问题。

在数据分析和处理过程中,经常会遇到需要将来自不同数据源的数据进行关联和匹配的情况。Pandas 库提供了强大的数据操作功能,其中的 pd.merge() 函数是实现 DataFrame 数据匹配的关键工具。

使用 pd.merge() 函数进行数据匹配

pd.merge() 函数允许我们基于一个或多个共同列将两个 DataFrame 合并为一个。其基本语法如下:

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
         left_index=False, right_index=False, sort=False,
         suffixes=('_x', '_y'), copy=True, indicator=False,
         validate=None)

其中,常用的参数包括:

  • left: 左侧的 DataFrame。
  • right: 右侧的 DataFrame。
  • on: 用于连接的列名,必须同时存在于左右两个 DataFrame 中。
  • left_on: 左侧 DataFrame 用于连接的列名。
  • right_on: 右侧 DataFrame 用于连接的列名。
  • how: 连接方式,包括 'inner'(默认)、'outer'、'left' 和 'right'。

示例:匹配具有不同 User ID 的 DataFrame

假设我们有三个 DataFrame:

  • df1: 包含 User ID (旧), User Name 和 User Email。
  • df2: 包含 Group Name, User ID (旧) 和 User Name。
  • df3: 包含 User ID (新), User Name 和 User Email。

我们的目标是根据 User Name 将 df1、df2 和 df3 关联起来,最终得到一个包含 Group Name, User ID (新) 的 DataFrame。

以下是实现步骤:

  1. 合并 df1 和 df2: 基于 User ID (旧) 进行合并。
import pandas as pd

# 示例数据
data1 = {'User ID': [1, 2, 3], 'User Name': ['Alice', 'Bob', 'Charlie'], 'User Email': ['alice@example.com', 'bob@example.com', 'charlie@example.com']}
data2 = {'Group Name': ['GroupA', 'GroupB', 'GroupA'], 'User ID': [1, 2, 3], 'User Name': ['Alice', 'Bob', 'Charlie']}
data3 = {'User ID': [101, 102, 103], 'User Name': ['Alice', 'Bob', 'Charlie'], 'User Email': ['alice@example.com', 'bob@example.com', 'charlie@example.com']}

df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
df3 = pd.DataFrame(data3)


df_12 = pd.merge(df1, df2, on=['User ID'])
print("合并 df1 和 df2:")
print(df_12)
  1. 重命名 df3 的 User ID 列: 为了避免列名冲突,将 df3 的 User ID 列重命名为 'old User ID'。实际上应该重命名为New User ID, 否则会报错。
df3 = df3.rename(columns={'User ID': 'New User ID'})
print("\n重命名 df3 的 User ID 列:")
print(df3)
  1. 合并 df_12 和 df3: 基于 User Name 进行合并。
df_total = pd.merge(df_12, df3, on=['User Name'])
print("\n合并 df_12 和 df3:")
print(df_total)

现在,df_total 包含了 User ID (旧) 和 User ID (新) 以及其他相关信息。

代码示例:完整流程

import pandas as pd

# 示例数据
data1 = {'User ID': [1, 2, 3], 'User Name': ['Alice', 'Bob', 'Charlie'], 'User Email': ['alice@example.com', 'bob@example.com', 'charlie@example.com']}
data2 = {'Group Name': ['GroupA', 'GroupB', 'GroupA'], 'User ID': [1, 2, 3], 'User Name': ['Alice', 'Bob', 'Charlie']}
data3 = {'User ID': [101, 102, 103], 'User Name': ['Alice', 'Bob', 'Charlie'], 'User Email': ['alice@example.com', 'bob@example.com', 'charlie@example.com']}

df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
df3 = pd.DataFrame(data3)

# 合并 df1 和 df2
df_12 = pd.merge(df1, df2, on=['User ID'])

# 重命名 df3 的 User ID 列
df3 = df3.rename(columns={'User ID': 'New User ID'})

# 合并 df_12 和 df3
df_total = pd.merge(df_12, df3, on=['User Name'])

print(df_total)

注意事项

  • 确保用于合并的列名在 DataFrame 中存在且数据类型一致。
  • 如果多个 DataFrame 包含相同的列名,可以使用 suffixes 参数来区分它们。
  • 根据实际需求选择合适的 how 参数,例如 'left' 可以保留左侧 DataFrame 的所有行。
  • 在处理大型数据集时,注意内存使用情况,避免出现内存溢出。

总结

pd.merge() 函数是 Pandas 库中强大的数据匹配工具,可以灵活地将不同 DataFrame 中的数据关联起来。通过合理使用 pd.merge() 函数,可以高效地解决各种数据匹配和转换问题,为后续的数据分析和建模提供便利。

今天关于《Python快速匹配两个DataFrame方法》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

Win11空间音效开启方法详解Win11空间音效开启方法详解
上一篇
Win11空间音效开启方法详解
GoogleAIPlus升级,国内替代方案推荐
下一篇
GoogleAIPlus升级,国内替代方案推荐
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3195次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3408次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3438次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4546次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3816次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码