当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 数据科学必知必会:10个重要概念+22张图表含义

数据科学必知必会:10个重要概念+22张图表含义

来源:51CTO.COM 2023-04-17 18:51:59 0浏览 收藏

小伙伴们对科技周边编程感兴趣吗?是否正在学习相关知识点?如果是,那么本文《数据科学必知必会:10个重要概念+22张图表含义》,就很适合你,本篇文章讲解的知识点主要包括。在之后的文章中也会多多分享相关知识点,希望对大家的知识积累有所帮助!

01 偏差-方差权衡

这是一个总是在机器学习最重要理论中名列前茅的概念。机器学习中的几乎所有算法(包括深度学习)都努力在偏差和方差之间取得适当的平衡,这个图清楚地解释了二者的对立关系。

图片图片

02 基尼不纯度与熵

Gini(缺乏同质性的度量)和 Entropy(随机性的度量)都是决策树中节点不纯度的度量。

图片

图片图片

对于这两个概念更重要的是要了解它们之间的关系,以便能够在给定的场景中选择正确的指标。

基尼不纯度(系数)通常比熵更容易计算(因为熵涉及对数计算)。

03 精度与召回曲线

精度-召回曲线显示了不同阈值的精度和召回率之间的权衡。曲线下面积大代表高召回率和高精度,其中高精度与低误报率相关,高召回率与低误报率相关。

它可以帮助我们根据需要选择正确的阈值。例如,如果我们的目标是减少类型 1 错误,我们需要选择高精度,而如果我们的目标是最小化类型 2 错误,那么我们应该选择一个阈值,使得召回率很高。图片

  • 精度分母是一个变量:即假阳性(归类为阳性的负样本)每次都会变化。
  • 召回分母是一个常数:它代表真值的总数,因此将始终保持不变。

这就是为什么下图 Precision 在结束时有一个波动,而召回始终保持平稳的原因。

图片

04 ROC曲线

ROC 曲线是显示分类模型在所有分类阈值下的性能的图表。

这条曲线绘制了两个参数:

真阳性率<br>误报率

图片

此曲线下的面积(称为 AUC),也可用作性能指标。AUC 越高,模型越好。

图片

05 弯头曲线

用于K-means算法中最优簇数的选择。WCSS(簇内平方和)是给定簇中每个点与质心之间的平方距离之和。当我们用 K(簇数)值绘制 WCSS 时,该图看起来像一个肘部(弯头)。

随着聚类数量的增加,WCSS 值将开始下降。K = 1时WCSS值最大

图片

06三块地块

它帮助我们在对高维数据执行主成分分析后,可视化每个主成分解释的变异百分比。为了选择正确数量的主成分来考虑我们的模型,我们通常会绘制此图并选择能够为我们提供足够好的总体方差百分比的值。

图片图片图片

07线性和逻辑回归曲线

图片

对于线性可分数据,我们可以进行线性回归或逻辑回归,二者都可以作为决策边界曲线/线。但是,在逻辑回归的情况下,由于通常只有 2 个类别,因此具有线性直线决策边界可能不起作用,在一条直线上值从低到高非常均匀地上升,因为它不够陡峭在值突然上升后会得到很多临界的高值或者低值,最终会错误分类。因此,"边界"区域,即概率从高到低转变的区域并不真正存在。所以一般情况下会应用 sigmoid 变换将其转换为 sigmoid 曲线,该曲线在极端情况下是平滑的,在中间几乎是线性的。

图片

08支持向量机(几何理解)

图片

09标准正态分布规则(z-分布)

均值为0,标准差为1的特殊正态分布。图片

经验法则指出,按照正态分布观察到的数据中有 99.7% 位于平均值的 3 个标准差以内。根据该规则,68% 的数据在一个标准差内,95% 在两个标准差内,99.7% 在三个标准差内。10学生T分布T 分布(也称为学生 T 分布)是一系列分布,看起来几乎与正态分布曲线相同,只是更短和更宽/更胖。当我们有较小的样本时,我们使用 T分布而不是正态分布。样本量越大,t 分布越像正态分布。事实上,在 30 个样本之后,T 分布几乎与正态分布完全一样。

图片

总结

我们可能会遇到许多小而关键的概念,这些概念构成了我们做出决定或选择正确模型的基础。本文中提到的重要概念都可以通过相关的图表进行表示,这些概念是非常重要的,需要我们在看到其第一眼时就知道他的含义,如果你已经对上面的概念都掌握了,那么可以试试说明下图代表了什么:

图片

好了,本文到此结束,带大家了解了《数据科学必知必会:10个重要概念+22张图表含义》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
五年时间被引用3.8万次,Transformer宇宙发展成了这样五年时间被引用3.8万次,Transformer宇宙发展成了这样
上一篇
五年时间被引用3.8万次,Transformer宇宙发展成了这样
又一机器学习模型解释神器:Shapash
下一篇
又一机器学习模型解释神器:Shapash
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    149次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    179次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    166次使用
  • 稿定PPT:在线AI演示设计,高效PPT制作工具
    稿定PPT
    告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
    154次使用
  • Suno苏诺中文版:AI音乐创作平台,人人都是音乐家
    Suno苏诺中文版
    探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
    184次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码