当前位置:首页 > 文章列表 > 文章 > python教程 > Pandas提取数字分组聚合教程

Pandas提取数字分组聚合教程

2025-10-03 10:24:29 0浏览 收藏

文章小白一枚,正在不断学习积累知识,现将学习到的知识记录一下,也是将我的所得分享给大家!而今天这篇文章《Pandas提取字符串数字并分组聚合教程》带大家来了解一下##content_title##,希望对大家的知识积累有所帮助,从而弥补自己的不足,助力实战开发!


Pandas中从混合字符串列提取数字并进行分组聚合的教程

本教程将详细介绍如何在Pandas数据帧中处理包含混合文本和数字的列。我们将学习如何利用str.extract结合正则表达式高效地从字符串中提取数值,并通过groupby方法对提取出的数据进行分组求和。文章还将涵盖条件性聚合的实现,帮助读者掌握清洗和分析复杂数据列的关键技巧。

在数据分析实践中,我们经常会遇到Pandas数据帧中的某一列包含混合了文本和数字的数据,且格式不统一。例如,一个“销售额”列可能包含“1 table”、“3chairs”、“8 cushions”等多种表达方式。直接对这样的列进行数值计算(如求和)是不可行的。本教程旨在解决这一常见问题,展示如何从这些复杂字符串中准确提取数字,并根据其他列进行分组聚合。

准备数据

首先,我们创建一个示例Pandas DataFrame来模拟上述场景:

import pandas as pd
import io

data = """Category    Sales       Paid
Table       1 table     Yes
Chair       3chairs     Yes
Cushion     8 cushions  Yes
Table       3Tables     Yes
Chair       12 Chairs   No
Mats        12Mats      Yes
"""
df = pd.read_csv(io.StringIO(data), sep='\s+')
print("原始数据帧:")
print(df)

输出的原始数据帧如下:

原始数据帧:
  Category       Sales Paid
0    Table     1 table  Yes
1    Chair     3chairs  Yes
2  Cushion  8 cushions  Yes
3    Table     3Tables  Yes
4    Chair    12 Chairs   No
5     Mats       12Mats  Yes

可以看到,Sales列中的数字和文本混杂,且格式不一致。我们的目标是从Sales列中提取纯数字,然后按Category列进行分组求和。

核心方法:使用 str.extract 提取数字

Pandas Series对象提供了一系列强大的字符串方法,其中str.extract()是处理复杂字符串提取的利器。它结合正则表达式,能够从字符串中捕获特定模式的子串。

要从Sales列中提取开头的数字,我们可以使用正则表达式^(\d+):

  • ^:匹配字符串的开头。
  • \d+:匹配一个或多个数字(0-9)。
  • ():创建一个捕获组,str.extract将返回这个捕获组的内容。

str.extract(pattern, expand=False) 会将匹配到的内容作为Series返回,如果设置为expand=True(默认值),则会返回一个DataFrame。在这里,我们只需要一个Series,所以使用expand=False。

# 提取Sales列中的数字
extracted_numbers = df['Sales'].str.extract('^(\d+)', expand=False)
print("\n提取出的数字(字符串形式):")
print(extracted_numbers)

输出结果:

提取出的数字(字符串形式):
0     1
1     3
2     8
3     3
4    12
5    12
Name: Sales, dtype: object

此时,提取出的数字仍然是字符串类型(dtype: object)。为了进行数值计算,我们需要将其转换为整数类型。

# 将提取出的数字转换为整数
sales_numbers = extracted_numbers.astype(int)
print("\n转换为整数类型后的销售数字:")
print(sales_numbers)

输出结果:

转换为整数类型后的销售数字:
0     1
1     3
2     8
3     3
4    12
5    12
Name: Sales, dtype: int64

分组聚合:计算每个类别的总销售额

有了纯数字的销售额Series,我们现在可以结合Category列进行分组求和了。

# 按Category分组并求和所有销售额
total_sales_per_category = sales_numbers.groupby(df['Category']).sum()
print("\n每个类别的总销售额:")
print(total_sales_per_category)

输出结果:

每个类别的总销售额:
Category
Chair      15
Cushion     8
Mats       12
Table       4
Name: Sales, dtype: int64

这里,Chair的总销售额是 3 + 12 = 15,Table的总销售额是 1 + 3 = 4,这与我们的预期相符。

进阶应用:条件性分组聚合

有时,我们可能需要根据额外的条件进行聚合。例如,只计算Paid列为Yes的销售额。

为了实现条件性聚合,我们可以在提取数字之前,先根据条件对Sales列进行预处理。对于Paid列为No的行,我们可以将Sales值替换为'0'。这样,即使这些行的原始Sales值包含数字,它们在提取和转换后也会变为0,从而不影响最终的求和结果。

# 只计算Paid为'Yes'的销售额
paid_sales_numbers = (
    df['Sales']
    .where(df['Paid'] == 'Yes', other='0') # 如果Paid不是'Yes',则将Sales列的值替换为'0'
    .str.extract('^(\d+)', expand=False)
    .astype(int)
    .groupby(df['Category'])
    .sum()
)
print("\n每个类别的已支付销售额:")
print(paid_sales_numbers)

输出结果:

每个类别的已支付销售额:
Category
Chair       3
Cushion     8
Mats       12
Table       4
Name: Sales, dtype: int64

在这个例子中,Chair类别的总销售额从15降至3,因为其中一笔“12 Chairs”的销售其Paid状态为No,在计算时被忽略(或计为0)。

注意事项与总结

  1. 正则表达式的灵活性: str.extract 的强大之处在于其与正则表达式的结合。本教程使用了简单的^(\d+)来匹配开头的数字,但如果数字出现在字符串的其他位置(例如“Item_123Count”),您需要调整正则表达式(如`(\d+)_`)。
  2. 数据类型转换: str.extract 提取的结果默认是字符串类型。在进行数值计算前,务必使用astype(int)或astype(float)将其转换为合适的数值类型。
  3. 处理非匹配项: 如果str.extract没有找到匹配项,它将返回NaN。在尝试astype(int)时,NaN会导致错误。在使用astype(int)之前,您可能需要使用fillna(0)或其他策略来处理这些NaN值。在条件性聚合的例子中,我们巧妙地使用了where(..., other='0')来避免NaN,确保所有值都能转换为整数。
  4. expand=False 的作用: str.extract 默认返回一个DataFrame。当正则表达式中只有一个捕获组,并且我们希望结果是一个Series时,设置expand=False会更简洁方便。

通过本教程,您应该掌握了如何利用Pandas的str.extract方法结合正则表达式,从包含混合文本和数字的列中提取所需的数值信息,并进一步进行分组聚合。这些技巧对于数据清洗和预处理至关重要,能帮助您更高效地分析复杂数据集。

今天关于《Pandas提取数字分组聚合教程》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

喜马拉雅粉丝圈怎么加入?详细步骤解析喜马拉雅粉丝圈怎么加入?详细步骤解析
上一篇
喜马拉雅粉丝圈怎么加入?详细步骤解析
Golang环境搭建与Goland配置指南
下一篇
Golang环境搭建与Goland配置指南
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3186次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3398次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3429次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4535次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3807次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码