Jeff Dean等人新作:换个角度审视语言模型,规模不够发现不了
知识点掌握了,还需要不断练习才能熟练运用。下面golang学习网给大家带来一个科技周边开发实战,手把手教大家学习《Jeff Dean等人新作:换个角度审视语言模型,规模不够发现不了》,在实现功能的过程中也带大家重新温习相关知识点,温故而知新,回头看看说不定又有不一样的感悟!
近年来,语言模型对自然语言处理 (NLP) 产生了革命性影响。众所周知,扩展语言模型,例如参数等,可以在一系列下游 NLP 任务上带来更好的性能和样本效率。在许多情况下,扩展对性能的影响通常可以通过扩展定律进行预测,一直以来,绝大多数研究者都在研究可预测现象。
相反,包括 Jeff Dean 、 Percy Liang 等在内的 16 位研究者合作的论文《 Emergent Abilities of Large Language Models 》,他们讨论了大模型不可预测现象,并称之为大型语言模型的突现能力( emergent abilities)。所谓的突现,即有些现象不存在于较小的模型中但存在于较大的模型中,他们认为模型的这种能力是突现的。
突现作为一种想法已经在物理学、生物学和计算机科学等领域讨论了很长时间,本论文从突现的一般定义开始,该定义改编自 Steinhardt 的研究,并植根于 1972 年诺贝尔奖获得者、物理学家 Philip Anderson 的一篇名为 More Is Different 的文章。
本文探讨了模型规模的突现,通过训练计算和模型参数来衡量。具体而言,本文将大型语言模型的突现能力定义为在小规模模型中不存在、但在大规模模型中存在的能力;因此,大型模型不能通过简单地推断小规模模型的性能改进来进行预测。该研究调查了在一系列先前工作中观察到的模型突现能力,并将它们进行分类:小样本提示和增强提示等设置。
模型的这种突现能力激发了未来的研究,即为什么会获得这些能力,以及更大的规模是否会获得更多的突现能力,并强调了这项研究的重要性。
论文地址:https://arxiv.org/pdf/2206.07682.pdf
小样本提示任务
本文首先讨论了提示范式中的突现能力。例如在 GPT-3 提示中,给出预训练语言模型任务提示,模型无需进一步训练或对参数进行梯度更新即可完成响应。此外,Brown 等人提出了小样本提示,他们将模型上下文(输入)中的一些输入输出示例作为提示(preamble),然后要求模型执行未见过的推理任务。图 1 为一个提示示例。
当模型具有随机性能且具有一定规模时,通过小样本提示就可以执行任务,这时突现能力就会出现,之后模型性能远远高于随机性能。下图展示了 5 个语言模型系列(LaMDA、GPT-3、Gopher、Chinchilla 以及 PaLM )的 8 种突现能力。
BIG-Bench:图 2A-D 描述了来自 BIG-Bench 的四个突现小样本提示任务,BIG-Bench 是一个由 200 多个语言模型评估基准的套件。图 2A 显示了一个算术基准,它测试了 3 位数字的加减法,以及 2 位数字的乘法。表 1 给出了 BIG-Bench 更多突现能力。
增强提示策略
目前来看,尽管小样本提示是与大型语言模型交互的最常见方式,但最近的工作已经提出了其他几种提示和微调策略,以进一步增强语言模型的能力。如果一项技术在应用到一个足够大的模型之前没有显示出改进或者是有害的,本文也认为该技术也是一种突现能力。
多步推理(Multi-step reasoning):对于语言模型和 NLP 模型来说,推理任务,尤其是那些涉及多步推理的任务一直是一个很大的挑战。最近有一种名为思维链(chain-of-thought)提示策略,通过引导语言模型在给出最终答案之前生成一系列中间步骤,从而使它们能够解决这类问题。如图 3A 所示,当扩展到 1023 次训练 FLOP(~ 100B 参数)时,思维链提示只超过了没有中间步骤的标准提示。
指令( Instruction following ):如图 3B 所示,Wei 等人发现,当训练 FLOP 为 7 · 10^21 (8B 参数)或更小时,指令微调(instruction-finetuning)技术会损害模型性能,在将训练 FLOP 扩展到 10^23 (~100B 参数)时才能提高性能。
程序执行( Program execution ):如图 3C 所示,在 8 位加法的域内评估中,使用暂存器仅有助于 ∼9 · 10^19 个训练 FLOP(40M 参数)或更大的模型。图 3D 显示这些模型也可以泛化到域外 9 位加法,它出现在 ∼1.3 · 10^20 个训练 FLOPs(100M 参数)。
本文讨论了语言模型的突现能力,到目前为止,仅在一定的计算规模上才能观察到有意义的性能。模型的这种突现能力可以跨越各种语言模型、任务类型和实验场景。这种突现的存在意味着额外的规模扩展可以进一步扩大语言模型的能力范围。这种能力是最近发现的语言模型扩展的结果,关于它们是如何出现的,以及更多的扩展是否会带来更多的突现能力,可能是NLP领域未来重要的研究方向。
更多内容,请参考原论文。
好了,本文到此结束,带大家了解了《Jeff Dean等人新作:换个角度审视语言模型,规模不够发现不了》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

- 上一篇
- Demis Hassabis:AI 的强大,超乎我们的想象

- 下一篇
- 传闻 iPhone 15 Pro 将配备三星的屏下面部识别系统
-
- 科技周边 · 人工智能 | 3小时前 |
- MistralAI发布多模态模型MistralMedium3
- 446浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 一季度中国车出口TOP10:俄罗斯位列第三
- 318浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- 即梦ai导出4K视频攻略超清分辨率设置教程
- 241浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- 用豆包A/生成的表情包如何赚钱
- 326浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- PPTFake答辩PPT生成器
- PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
- 10次使用
-
- Lovart
- SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
- 9次使用
-
- 美图AI抠图
- 美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
- 26次使用
-
- PetGPT
- SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
- 25次使用
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 52次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览