当前位置:首页 > 文章列表 > 文章 > java教程 > Java并行计算:RecursiveTask实现教程

Java并行计算:RecursiveTask实现教程

2025-10-01 13:15:55 0浏览 收藏

欢迎各位小伙伴来到golang学习网,相聚于此都是缘哈哈哈!今天我给大家带来《Java中使用RecursiveTask实现并行计算》,这篇文章主要讲到等等知识,如果你对文章相关的知识非常感兴趣或者正在自学,都可以关注我,我会持续更新相关文章!当然,有什么建议也欢迎在评论留言提出!一起学习!

ForkJoin框架通过分而治之和工作窃取实现高效并行计算,适用于可递归分解的计算密集型任务。

如何在Java中使用Fork Join RecursiveTask

Java的ForkJoin框架提供了一种高效并行处理任务的机制,特别是针对那些可以被递归分解成更小独立子任务的计算。其中RecursiveTask用于处理需要返回结果的任务,它通过“分而治之”的思想,将大问题拆解,并行计算,最终将子结果合并,从而充分利用多核处理器的性能。

要在Java中有效地使用ForkJoinRecursiveTask,核心在于理解其“分而治之”的策略。这通常涉及几个关键步骤,而且说实话,第一次接触时可能会觉得有点绕,但一旦掌握了模式,就会发现它非常强大。

首先,你需要一个ForkJoinPool,这是所有ForkJoin任务的执行场所。它管理着一组工作线程,并实现了“工作窃取”算法,确保CPU核心不会闲置。

接着,你需要定义一个继承自RecursiveTaskV是你任务返回结果的类型)的类。这个类里最关键的就是重写compute()方法。

compute()方法内部,你需要实现你的“分而治之”逻辑:

  1. 确定基础任务(Base Case):这是任务分解的最小单元。当一个任务足够小,不再需要进一步分解时,就直接执行它并返回结果。这个“足够小”的阈值(通常称为THRESHOLD)是性能调优的关键点之一,过大或过小都会影响效率。
  2. 递归分解(Recursive Case):如果任务仍然太大,就把它拆分成两个(或更多)更小的子任务。
    • 创建新的RecursiveTask实例来代表这些子任务。
    • 使用fork()方法异步地提交一个子任务到ForkJoinPoolfork()会安排这个任务在一个可用的工作线程上执行。
    • 另一个子任务可以选择直接调用其compute()方法(这通常被称为“帮助执行”或“就地执行”),或者也fork()出去。实践中,通常会fork()一个,然后当前线程直接处理另一个,这样可以减少线程切换的开销。
    • 使用join()方法等待已fork()的子任务完成并获取其结果。join()会阻塞当前线程,直到对应的任务完成。
    • 最后,将所有子任务的结果合并,形成当前任务的最终结果。

下面是一个简单的例子,演示如何使用RecursiveTask来并行计算一个大数组中所有元素的和:

import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;
import java.util.stream.LongStream; // 用于生成测试数据

// 继承RecursiveTask,并指定返回类型为Long
class SumArrayTask extends RecursiveTask<Long> {
    private final long[] array;
    private final int start;
    private final int end;
    // 定义一个阈值,当子任务的长度小于等于这个值时,就直接计算
    private static final int THRESHOLD = 10_000; 

    public SumArrayTask(long[] array, int start, int end) {
        this.array = array;
        this.start = start;
        this.end = end;
    }

    @Override
    protected Long compute() {
        // 如果任务规模小于等于阈值,直接计算
        if (end - start <= THRESHOLD) {
            long sum = 0;
            for (int i = start; i < end; i++) {
                sum += array[i];
            }
            return sum;
        } else {
            // 否则,将任务分解成两个子任务
            int mid = start + (end - start) / 2;
            SumArrayTask leftTask = new SumArrayTask(array, start, mid);
            SumArrayTask rightTask = new SumArrayTask(array, mid, end);

            // 异步执行左侧子任务
            leftTask.fork();

            // 同步执行右侧子任务(当前线程可能直接执行)
            Long rightResult = rightTask.compute();

            // 等待左侧子任务完成并获取结果
            Long leftResult = leftTask.join();

            // 合并结果
            return leftResult + rightResult;
        }
    }

    public static void main(String[] args) {
        long[] data = LongStream.rangeClosed(1, 10_000_000).toArray(); // 创建一个大数组

        // 创建ForkJoinPool,通常使用默认的公共池
        ForkJoinPool pool = new ForkJoinPool(); 
        // 或者使用 ForkJoinPool.commonPool();

        // 创建主任务
        SumArrayTask mainTask = new SumArrayTask(data, 0, data.length);

        // 提交任务并获取结果
        long startTime = System.currentTimeMillis();
        Long result = pool.invoke(mainTask); // invoke()会阻塞直到任务完成
        long endTime = System.currentTimeMillis();

        System.out.println("计算结果: " + result);
        System.out.println("耗时: " + (endTime - startTime) + " ms");

        // 验证结果(可选)
        long expectedSum = LongStream.rangeClosed(1, 10_000_000).sum();
        System.out.println("预期结果: " + expectedSum);
        System.out.println("结果是否正确: " + (result == expectedSum));

        // 关闭线程池,如果使用的是commonPool则不需要手动关闭
        // pool.shutdown(); 
    }
}

通过pool.invoke(mainTask)启动整个计算过程。invoke()方法会阻塞,直到mainTask及其所有子任务都完成,并返回最终结果。这个过程听起来有点像递归函数调用,但关键在于fork()join()的异步与同步协调,以及ForkJoinPool底层的工作窃取机制,这些才是性能提升的秘密武器。

为什么选择ForkJoin框架处理计算密集型任务?

说实话,刚开始接触Java并发时,我可能更倾向于用ExecutorServiceFuture来处理并行任务,觉得那样更直观。但随着对一些特定计算场景的深入,比如大规模数组求和、归并排序、图像处理中的像素并行计算等,我逐渐认识到ForkJoin框架的独特优势。它并非万能药,但对于那些天然符合“分而治之”思想的计算密集型任务,它的表现确实令人印象深刻。

其核心优势在于其工作窃取(Work-Stealing)算法。简单来说,当一个工作线程完成了自己的任务队列,它不会闲着,而是会去“偷取”其他忙碌线程队列中的任务来执行。这极大地提高了CPU的利用率,减少了线程空闲时间,尤其是在任务量不均或任务粒度不确定的情况下

本篇关于《Java并行计算:RecursiveTask实现教程》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!

Excel免费版官网入口及使用方法Excel免费版官网入口及使用方法
上一篇
Excel免费版官网入口及使用方法
美图秀秀瘦脸瘦身教程及大长腿技巧
下一篇
美图秀秀瘦脸瘦身教程及大长腿技巧
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3162次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3375次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3403次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4506次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3784次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码