当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 70年AI发展迎来大一统?马毅、曹颖、沈向洋最新AI综述:探索智能发生的基本原则与「标准模型」

70年AI发展迎来大一统?马毅、曹颖、沈向洋最新AI综述:探索智能发生的基本原则与「标准模型」

来源:51CTO.COM 2023-04-17 15:16:24 0浏览 收藏

学习知识要善于思考,思考,再思考!今天golang学习网小编就给大家带来《70年AI发展迎来大一统?马毅、曹颖、沈向洋最新AI综述:探索智能发生的基本原则与「标准模型」》,以下内容主要包含等知识点,如果你正在学习或准备学习科技周边,就都不要错过本文啦~让我们一起来看看吧,能帮助到你就更好了!

​人工智能发展七十年,虽然技术指标上不断刷新,但到底什么是「智能」,它如何出现及发展的,还没有答案。

最近马毅教授联手计算机科学家沈向洋博士、神经科学家曹颖教授发表了一篇对智能出现及发展的研究综述,希望将智能体的研究在理论上统一起来,增进对人工智能模型的理解与可解释性。

图片

论文链接:http://arxiv.org/abs/2207.04630

文中引入了两个基本原则:简约(Parsimony)与自洽( Self-consistency)。

作者认为这是智力、人工或自然的兴起的基石。尽管在经典文献里,对这两个原则各自的相关论述、阐述众多,但本文对这两个原则以完全可度量和可计算的方式重新进行解读。

基于这两个第一性的原则,作者推演出了一个高效的计算框架:压缩闭环转录,该框架统一并解释了现代深度网络和许多人工智能实践的演变。

图片

两大基本原则:简约与自洽

在深度学习加持下,过去十年人工智能取得的进展主要依赖于训练同质化的黑箱模型,使用粗暴的工程方法训练大规模神经网络。

虽然性能提高了,也无需手动设计特征,但神经网络内部学到的特征表示却是不可解释的,并且大模型带来其他的难题,比如不断提高的数据收集和计算的成本、学到的表征缺乏丰富性、稳定性(模式崩溃)、适应性(容易出现灾难性遗忘);对变形或对抗性攻击缺乏稳健性等。

作者认为,目前在深度网络和人工智能的实践中出现这些问题的根本原因之一是对智能系统的功能和组织原则缺乏系统和综合的理解。

举个例子,训练用于分类的判别式模型和用于采样或重放的生成性模型基本上在实践中是分开的。这样训练的模型通常叫开环系统,需要通过监督或自监督进行端到端的训练。

在控制理论中,这种开环系统(open-loop systems)不能自动纠正预测中的错误,而且对环境的变化没有适应性;正是因为这样的问题,在控制系统(controlled systems)中大家广泛采用「闭环反馈」,使系统能够自主纠正错误。

类似的经验在学习中也适用:一旦判别式模型和生成性模型结合在一起,形成一个完整的闭环系统,学习就可以变得自主(无需外部监督),而且更有效率、更稳定、更有适应性。

为了理解智能系统中可能需要的功能组件,如判别器或生成器等部件,我们需要从一个更加「原则」和「统一」的角度来理解智能。

文中提出两个基本原则:简约(Parsimony)和自洽(Self-consistency),分别回答了关于学习的两个基本问题。

  • 学什么:要从数据中学习什么,如何衡量学到的好坏?
  • 怎么学:我们如何通过高效和有效的计算框架来实现这样一个学习的目标?

对于第一个「学什么」的问题,简约原则认为:​

智能系统的学习目标就是从外部世界的观测数据中找出低维的结构,并且以最紧凑和结构化的方式重新组织和表示它们。

这也就是「奥卡姆剃刀」原则:如无必要,勿增实体。

如果没有这一原则,智能就不可能发生与存在!如果对外部世界的观测数据没有低维结构,就没有什么值得学习或记忆的东西,也就无法进行良好的泛化或预测。

而且智能系统需要尽量节省资源,如能量、空间、时间和物质等,在某些情况下,该原则也被称为「压缩原则」。但是,智能的简约性(Parsimony of Intelligence)并不是要实现最好的压缩,而是要通过高效的计算手段获得观测数据最紧凑和结构化的表达。

图片

那么简约性该如何度量?

对于一般的高维模型来说,许多常用的数学或统计学「度量」的计算成本都是指数级的,或者对于有低维结构的数据分布来说,甚至是没有定义的,比如最大似然、KL分歧、互信息、Jensen-Shannon和Wasserstein距离等。

作者认为学习的目的实际上就是建立一个映射(通常是非线性的),从原始高维输入中得到一个低维的表示。

图片

这样,得到的特征z的分布应该更加紧凑和结构化;紧凑意味着存储上更经济;结构化意味着访问和使用更加高效:特别是线性结构,是内插或外推的理想选择。

为了这个目的,作者引入了线性判别表示(LDR),实现三个子目标:

  1. 压缩:将高维感官数据x映射到低维表征z;
  2. 线性化:将分布在非线性子面的每一类物体映射到线性子空间;
  3. 稀疏化:将不同类别映射到相互独立或最不相关的子空间。

图片

而这几个目标可以通过最大编码率减少(rate reduction)来实现,保证所学到的LDR模型具有最优的简约性能。

图片

对于第二个「怎么学」的问题,自洽原则认为:​

一个自主的智能系统通过最小化观测到的数据和再生成的数据在内部表达中的差异,为外部世界的观测寻求一个最自洽的模型。

仅仅是简约原则并不能确保学到的模型能够捕捉到关于外部世界的数据中的所有重要信息。例如,通过最小化交叉熵,将每个类别映射到一个一维的one-hot向量,可以被看作是简约性的一种形式。

它可能会学到一个好的分类器,但学到的特征也可能会崩溃成一个singleton,也称为神经崩溃。这样学到的特征将不再包含足够的信息来重新生成原始数据。

即使我们考虑更普遍的LDR模型,仅靠最大化编码率差也不能自动确定环境特征空间的正确维度。

如果特征空间的维度太低,学到的模型就会与数据不匹配;如果太高,模型可能会过度匹配。

更一般地说,我们认为感知的学习不同于学习具体任务。感知的目标是学习关于所感知的一切可预测的内容。

就像爱因斯坦所说过的:「事情应该力求简单,不过不能过于简单。」

通用学习引擎

基于这两个原则,文章以视觉图像数据建模为例推导出了压缩闭环转录框架(compressive closed-loop transcription framework)。

其通过比较和最小化内部表征的差异,在内部对非线性数据子流型进行压缩式闭环转录,以实现LDR。

编码器/传感器和解码器/控制器之间的追逃游戏,可以让解码表征生成的数据的分布追逐和匹配观察到的真实数据分布。

图片

另外作者指出,压缩式闭环转录可以有效地进行增量学习。

一个新的数据类的LDR模型可以通过编码器和解码器之间的一个有约束的博弈来学习的:过去学习到的类的记忆可以很自然地作为博弈中的约束被保留,也就是作为闭环转录的「固定点」。

图片

文中还对这个框架的普适性提出了更多的推测性想法,将其扩展到三维视觉和强化学习,并预测其对神经科学、数学和高级智能的影响。

图片

通过这个由第一性原理推导出来的框架:信息编码理论、闭环反馈控制、优化/深度网络和博弈论的概念都有机地整合在一起,成为一个完整的、自主的智能系统的必要组成部分。

图片

值得一提的是,压缩闭环式架构在自然界的所有智能生物以及不同尺度上无处不在:从大脑(压缩感知信息),到脊柱回路(压缩肌肉运动),直至DNA(压缩蛋白质的功能信息)等等。

所以作者认为,压缩性闭环转录应该是所有智能行为背后的「通用学习引擎」。它使得自然的或者人工的智能系统能够从看似复杂的感知数据中发现并提炼出低维的结构,把它们转换为简洁规则的内部表达,以利于将来正确地判断和预测外部世界。

这是一切智能发生和发展的计算基础和机理。

参考资料:http://arxiv.org/abs/2207.04630​

今天关于《70年AI发展迎来大一统?马毅、曹颖、沈向洋最新AI综述:探索智能发生的基本原则与「标准模型」》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于人工智能,计算框架,智能系统的内容请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
生成式人工智能:类型、技能、机遇和挑战生成式人工智能:类型、技能、机遇和挑战
上一篇
生成式人工智能:类型、技能、机遇和挑战
随着 Apple 服务的增长,这就是为什么您不应该期望更长的免费试用期
下一篇
随着 Apple 服务的增长,这就是为什么您不应该期望更长的免费试用期
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    176次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    175次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    178次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    185次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    197次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码