Pandas合并教程:部分匹配详解
欢迎各位小伙伴来到golang学习网,相聚于此都是缘哈哈哈!今天我给大家带来《部分匹配Pandas合并教程详解》,这篇文章主要讲到等等知识,如果你对文章相关的知识非常感兴趣或者正在自学,都可以关注我,我会持续更新相关文章!当然,有什么建议也欢迎在评论留言提出!一起学习!

本文旨在介绍如何使用 Pandas 库,基于一个 DataFrame 列中的部分文本匹配另一个 DataFrame 的列,从而实现高效的数据合并。通过提取关键信息并进行连接,最终得到包含完整信息的目标 DataFrame。本文将提供详细的代码示例和步骤说明,帮助读者掌握这种常用的数据处理技巧。
在数据分析和处理中,经常会遇到需要将两个 DataFrame 基于某些关联字段进行合并的情况。但有时,关联字段并非完全一致,而是存在部分匹配的关系。例如,一个 DataFrame 的某一列包含完整的 ID 信息,而另一个 DataFrame 的某一列只包含 ID 的一部分,这时就需要采用一些技巧来实现数据的合并。
以下将通过一个具体的例子,演示如何使用 Pandas 库来实现这种基于部分匹配的 DataFrame 合并。
示例数据
假设我们有两个 DataFrame,df1 和 df2。
df1 包含主机名(Hostname)、区域(Region)和型号(Model)信息:
import pandas as pd
data1 = {'Hostname': ['ServerABC101', 'ServerABC102', 'ServerDDC103', 'ServerDDC609', 'ServerDDC103', 'ServerDDC609'],
'Region': ['US', 'US', 'PAC', 'Emea', 'PAC', 'Emea'],
'Model': ['Cisco', 'Cisco', 'Intel', 'Intel', 'Intel', 'Intel']}
df1 = pd.DataFrame(data1)
print("DataFrame df1:\n", df1)df2 包含站点(Site)、城市(City)和州(State)信息:
data2 = {'Site': ['ABC', 'DDC'],
'City': ['NYC', 'DAL'],
'State': ['NY', 'TX']}
df2 = pd.DataFrame(data2)
print("\nDataFrame df2:\n", df2)我们的目标是将 df1 和 df2 基于 df1['Hostname'] 中的部分文本(站点代码)与 df2['Site'] 进行匹配,最终得到一个包含所有信息的 DataFrame。
解决方案
提取站点代码:
首先,我们需要从 df1['Hostname'] 中提取出站点代码。假设站点代码是由 "Server" 后面的三个大写字母组成,我们可以使用正则表达式来实现:
df1['Site'] = df1['Hostname'].str.extract(r"Server([A-Z]{3})") print("\nDataFrame df1 with extracted Site:\n", df1)str.extract(r"Server([A-Z]{3})") 的作用是:
- str.extract(): 用于从字符串列中提取匹配正则表达式的部分。
- r"Server([A-Z]{3})": 这是一个正则表达式,用于匹配以 "Server" 开头,后跟三个大写字母的字符串。括号 () 用于捕获这三个大写字母,也就是我们需要的站点代码。
合并 DataFrame:
现在,我们已经提取出了 df1 中的站点代码,可以基于 Site 列将 df1 和 df2 进行合并。使用 pd.merge() 函数,并将 how 参数设置为 'left',以保留 df1 中的所有行:
df1 = pd.merge(df1, df2, on='Site', how='left') print("\nFinal Merged DataFrame:\n", df1)pd.merge(df1, df2, on='Site', how='left') 的作用是:
- pd.merge(): 用于合并两个 DataFrame。
- on='Site': 指定基于 Site 列进行合并。
- how='left': 指定合并方式为左连接,即保留左侧 DataFrame (df1) 的所有行,并将右侧 DataFrame (df2) 中匹配的行添加到左侧 DataFrame。如果右侧 DataFrame 中没有匹配的行,则添加的列将填充为 NaN。
完整代码
import pandas as pd
# 创建 DataFrame df1
data1 = {'Hostname': ['ServerABC101', 'ServerABC102', 'ServerDDC103', 'ServerDDC609', 'ServerDDC103', 'ServerDDC609'],
'Region': ['US', 'US', 'PAC', 'Emea', 'PAC', 'Emea'],
'Model': ['Cisco', 'Cisco', 'Intel', 'Intel', 'Intel', 'Intel']}
df1 = pd.DataFrame(data1)
# 创建 DataFrame df2
data2 = {'Site': ['ABC', 'DDC'],
'City': ['NYC', 'DAL'],
'State': ['NY', 'TX']}
df2 = pd.DataFrame(data2)
# 提取站点代码
df1['Site'] = df1['Hostname'].str.extract(r"Server([A-Z]{3})")
# 合并 DataFrame
df1 = pd.merge(df1, df2, on='Site', how='left')
# 打印结果
print(df1)注意事项
- 正则表达式: 正则表达式的编写需要根据实际情况进行调整。如果站点代码的规则不同,需要修改正则表达式以正确提取。
- 合并方式: how 参数可以设置为 'left'、'right'、'inner' 或 'outer',根据实际需求选择合适的合并方式。
- 缺失值处理: 如果 df2 中没有与 df1 匹配的站点代码,合并后的 DataFrame 中相应的列将填充为 NaN。可以根据实际情况选择合适的缺失值处理方法,例如使用 fillna() 函数填充缺失值。
总结
本文介绍了如何使用 Pandas 库,基于部分匹配的文本数据合并 DataFrame。通过提取关键信息和灵活运用 pd.merge() 函数,可以高效地完成数据的整合。这种方法在实际数据处理中非常实用,可以解决许多复杂的数据合并问题。掌握这些技巧,能够显著提升数据分析的效率。
本篇关于《Pandas合并教程:部分匹配详解》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!
哔哩哔哩投币怎么用?互动激励技巧分享
- 上一篇
- 哔哩哔哩投币怎么用?互动激励技巧分享
- 下一篇
- 京东魔镜等级查询方法及步骤
-
- 文章 · python教程 | 4小时前 |
- Python语言入门与基础解析
- 296浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- PyMongo导入CSV:类型转换技巧详解
- 351浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python列表优势与实用技巧
- 157浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Pandas修改首行数据技巧分享
- 485浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Python列表创建技巧全解析
- 283浏览 收藏
-
- 文章 · python教程 | 7小时前 |
- Python计算文件实际占用空间技巧
- 349浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- OpenCV中OCR技术应用详解
- 204浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Pandas读取Django表格:协议关键作用
- 401浏览 收藏
-
- 文章 · python教程 | 9小时前 | 身份验证 断点续传 requests库 PythonAPI下载 urllib库
- Python调用API下载文件方法
- 227浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Windows7安装RtMidi失败解决办法
- 400浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Python异步任务优化技巧分享
- 327浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3182次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3393次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3424次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4528次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3802次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

