Pandas条件分组填充列技巧详解
哈喽!今天心血来潮给大家带来了《Pandas条件分组填充列的高级技巧》,想必大家应该对文章都不陌生吧,那么阅读本文就都不会很困难,以下内容主要涉及到,若是你正在学习文章,千万别错过这篇文章~希望能帮助到你!

1. 问题背景与场景描述
在数据分析工作中,我们经常会遇到需要根据DataFrame中某个分组(例如按Col1分组)的特定条件来生成新列的场景。具体来说,如果一个分组内存在某个特定值(例如Col2列中包含'Y'),那么该分组下的所有行在新列中都应填充一个特定的值(例如Col3列中与'Y'对应的那个值);如果分组内不存在该特定值,则新列应填充该行自身的Col3值。
考虑以下原始数据表:
| index | Col1 | Col2 | Col3 |
|---|---|---|---|
| 0 | 1 | X | ABC |
| 1 | 1 | Y | XX |
| 2 | 1 | X | QW |
| 3 | 2 | X | VB |
| 4 | 2 | X | AY |
| 5 | 3 | X | MM |
| 6 | 3 | X | YY |
| 7 | 3 | Y | XX |
我们的目标是生成一个New_Col,其逻辑如下:
- 对于Col1为1的分组:因为Col2中包含'Y'(在index=1),所以该分组所有行的New_Col都应填充Col3中与'Y'对应的XX。
- 对于Col1为2的分组:因为Col2中不包含'Y',所以该分组所有行的New_Col都应填充其自身的Col3值(VB和AY)。
- 对于Col1为3的分组:因为Col2中包含'Y'(在index=7),所以该分组所有行的New_Col都应填充Col3中与'Y'对应的XX。
最终期望的输出结果如下:
| Col1 | Col2 | Col3 | New_Col |
|---|---|---|---|
| 1 | X | ABC | XX |
| 1 | Y | XX | XX |
| 1 | X | QW | XX |
| 2 | X | VB | VB |
| 2 | X | AY | AY |
| 3 | X | MM | XX |
| 3 | X | YY | XX |
| 3 | Y | XX | XX |
2. 解决方案:结合 mask、groupby().transform() 和 fillna()
Pandas提供了一套强大的工具集来解决这类问题。我们可以通过巧妙地组合mask、groupby().transform('first')和fillna来实现上述逻辑。
2.1 初始数据准备
首先,我们创建示例DataFrame:
import pandas as pd
import numpy as np
data = {
'Col1': [1, 1, 1, 2, 2, 3, 3, 3],
'Col2': ['X', 'Y', 'X', 'X', 'X', 'X', 'X', 'Y'],
'Col3': ['ABC', 'XX', 'QW', 'VB', 'AY', 'MM', 'YY', 'XX']
}
df = pd.DataFrame(data)
print("原始DataFrame:")
print(df)输出:
原始DataFrame: Col1 Col2 Col3 0 1 X ABC 1 1 Y XX 2 1 X QW 3 2 X VB 4 2 X AY 5 3 X MM 6 3 X YY 7 3 Y XX
2.2 核心逻辑与步骤解析
我们将通过以下三个主要步骤来构建New_Col:
步骤一:隐藏非目标值 (mask)
首先,我们创建一个Series,其中只有Col2为'Y'的行保留其对应的Col3值,其他行的值则被替换为NaN。mask函数在条件为True时替换值,所以我们使用df['Col2'] != 'Y'作为条件。
# 步骤一:隐藏非目标值
masked_col3 = df['Col3'].mask(df['Col2'] != 'Y')
print("\n步骤一:隐藏非'Y'对应的Col3值")
print(masked_col3)输出:
步骤一:隐藏非'Y'对应的Col3值 0 NaN 1 XX 2 NaN 3 NaN 4 NaN 5 NaN 6 NaN 7 XX Name: Col3, dtype: object
此时,我们得到了一个Series,其中只有那些我们感兴趣的(Col2为'Y')Col3值被保留,其余为NaN。
步骤二:按组传播第一个非空值 (groupby().transform('first'))
接下来,我们根据Col1进行分组,并使用transform('first')将每个组中的第一个非NaN值(如果有的话)传播到该组的所有行。transform操作会返回一个与原始DataFrame长度相同的Series。
# 步骤二:按Col1分组,传播第一个非空值
grouped_propagated = masked_col3.groupby(df['Col1']).transform('first')
print("\n步骤二:按Col1分组,传播第一个非空值")
print(grouped_propagated)输出:
步骤二:按Col1分组,传播第一个非空值 0 XX 1 XX 2 XX 3 None 4 None 5 XX 6 XX 7 XX Name: Col3, dtype: object
观察输出:
- 对于Col1为1的分组,masked_col3的第一个非NaN值是XX,因此该分组的所有行都被填充为XX。
- 对于Col1为2的分组,masked_col3中所有值都是NaN,所以transform('first')返回None(在Pandas中,None和NaN通常表示缺失值)。
- 对于Col1为3的分组,masked_col3的第一个非NaN值是XX,因此该分组的所有行都被填充为XX。
步骤三:填充剩余的缺失值 (fillna)
最后,对于那些在步骤二中仍为NaN(或None)的行(即原始分组中不包含'Y'的情况),我们使用原始的Col3值进行填充。
# 步骤三:填充剩余的缺失值
final_new_col = grouped_propagated.fillna(df['Col3'])
print("\n步骤三:填充剩余的缺失值")
print(final_new_col)输出:
步骤三:填充剩余的缺失值 0 XX 1 XX 2 XX 3 VB 4 AY 5 XX 6 XX 7 XX Name: Col3, dtype: object
至此,我们得到了符合要求的新列New_Col。
2.3 整合代码
将上述步骤整合到一行代码中,我们可以直接创建New_Col:
df['New_Col'] = (df['Col3'].mask(df['Col2'] != 'Y')
.groupby(df['Col1'])
.transform('first')
.fillna(df['Col3']))
print("\n最终DataFrame:")
print(df)输出:
最终DataFrame: Col1 Col2 Col3 New_Col 0 1 X ABC XX 1 1 Y XX XX 2 1 X QW XX 3 2 X VB VB 4 2 X AY AY 5 3 X MM XX 6 3 X YY XX 7 3 Y XX XX
3. 注意事项与总结
- mask函数:mask(condition, other=NaN)会在condition为True时,将Series中的对应值替换为other(默认为NaN)。这在有条件地“隐藏”或替换数据时非常有用。
- groupby().transform('first'):transform操作非常强大,它在每个分组上应用一个函数,并将结果广播回原始DataFrame的形状。'first'聚合函数会返回分组中的第一个非NaN值。如果整个分组都是NaN,则返回NaN。
- fillna函数:用于填充缺失值。在这里,它优雅地处理了那些不包含特定条件(即Col2不含'Y')的分组,确保它们回退到使用自身的Col3值。
- 性能:这种方法通常比使用apply配合自定义函数在大型DataFrame上更高效,因为它充分利用了Pandas的矢量化操作。
- 灵活性:此模式可以推广到其他类似场景,例如查找组内的最大/最小值、平均值,或基于更复杂的条件进行填充。只需调整mask的条件和transform的聚合函数即可。
通过掌握这种组合mask、groupby().transform()和fillna()的方法,数据分析师可以高效地解决Pandas中涉及条件分组填充新列的复杂问题,从而提高数据处理的灵活性和效率。
文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《Pandas条件分组填充列技巧详解》文章吧,也可关注golang学习网公众号了解相关技术文章。
Golang云原生搭建与微服务开发教程
- 上一篇
- Golang云原生搭建与微服务开发教程
- 下一篇
- 夸克浏览器PDF功能使用指南
-
- 文章 · python教程 | 23分钟前 |
- Python传递不定参数方法详解
- 464浏览 收藏
-
- 文章 · python教程 | 48分钟前 |
- 正则表达式中^和$分别表示行首和行尾。
- 243浏览 收藏
-
- 文章 · python教程 | 53分钟前 |
- PyCharm安装后怎么打开?首次启动教程
- 490浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python动态导入模块技巧分享
- 432浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pandas多级列转行索引技巧
- 226浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python环境搭建详细教程
- 268浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- FlaskMySQL查询无结果怎么解决
- 226浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- SeleniumPython点击新窗口冻结问题解决办法
- 293浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python函数返回值获取技巧
- 187浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Keras二分类器调试与优化方法
- 500浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3182次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3393次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3425次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4530次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3802次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

