当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 医药探索中的人工智能

医药探索中的人工智能

来源:51CTO.COM 2023-04-19 14:11:33 0浏览 收藏

IT行业相对于一般传统行业,发展更新速度更快,一旦停止了学习,很快就会被行业所淘汰。所以我们需要踏踏实实的不断学习,精进自己的技术,尤其是初学者。今天golang学习网给大家整理了《医药探索中的人工智能》,聊聊,我们一起来看看吧!

译者 | 崔皓

审校 | 孙淑娟

开篇

本文探讨了TypeDB帮助科学家们实现医学上的下一个突破,并且会通过指导性的代码例子和视觉效果展示结果。

医药探索中的人工智能

生物技术领域存在大量的炒作都集中于革命性药物发现上。毕竟,过去十年是该领域的黄金时代。与之前的十年相比,2012年到2021年这段时间批准的新药增加了73%--比之前的十年增加了25%。这些药物包括治疗癌症的免疫疗法、基因疗法,当然还有科威德疫苗。从这些方面可以看出制药业做得很好。

但其呈现的趋势也越来越令人担忧。药物发现的成本和风险正变得令人望而却步。截至到当前,新药推向市场的平均费用在10亿至30亿美元,平均时间在12至18年。同时,一种新药的平均价格已经从2007年的2千美元飙升到2021年的18万美元。

这就是为什么许多人把希望寄托在人工智能(AI)(如统计机器学习)上,以帮助加速新药的开发,从早期目标识别到试验。虽然已经利用各种机器学习算法确定了一些化合物,但这些化合物仍处于早期发现或临床前的开发阶段。人工智能彻底改变药物发现的承诺仍然是令人兴奋但尚未实现的承诺。

什么是人工智能?

为了实现这一承诺,理解人工智能的真正含义就显得至关重要了。近年来,人工智能这个词已经成为相当热门的词汇,没有多少技术含量。那么,什么才是真正的人工智能?

人工智能,作为一个学术领域,从20世纪50年代起就已经存在了,随着时间的推移,分支成各种类型,代表不同的学习方式。佩德罗-多明戈斯教授在《算法大师》一书中对这些类型进行了描述(他称它们为 "部落"):连接主义者、符号主义者、进化主义者、贝叶斯主义者和模拟主义者。

在过去的十年里,贝叶斯主义者和连接主义者受到了公众的广泛关注,而符号主义者则不同。符号学派在进行逻辑推理的规则集的基础上,创造出真实的世界表征。符号人工智能系统没有其他类型的人工智能所享有的巨大宣传,但它们拥有其他类型所缺乏的独特而重要的能力:自动推理和知识表示。

对生物医学知识的表现

事实上,知识表现的问题正是药物发现中最大的问题之一。现有的数据库软件,如关系数据库或图形数据库,很难准确地表示和理解生物学错综复杂的问题。

药物探索所表述的问题很好地说明了要为不同的生物医学数据源(如Uniprot或Disgenet)建立统一的模型。在数据库层面,这意味着创建数据模型(有些人可能把这些称为本体),描述无数复杂的实体和关系,如蛋白质、基因、药物、疾病、相互作用等之间的关系。

这就是TypeDB,一个开源的数据库软件,旨在实现的目标--使开发者能够创建高度复杂领域的真实表现,计算机可以利用它来获得洞察力。

TypeDB的类型系统是基于实体关系的概念,代表了TypeDB中存储的数据。这使得它足以捕捉复杂的生物医学领域知识(通过类型推理、嵌套关系、超关系、规则推理等),使科学家获得洞察力并加速药物开发时间。

一家大型制药公司的例子说明了这一点,该公司使用语义网标准为一个疾病网络建模奋斗了五年多,但在迁移到TypeDB之后,仅用三周时间就成功实现了这一目标。

例如,一个用TypeQL(TypeDB的查询语言)编写的、描述蛋白质、基因和疾病的生物医学模型看起来如下:

define 

protein sub entity, 
owns uniprot-id,
plays protein-disease-association:protein,
plays encode:encoded-protein; 

gene sub entity, 
owns entrez-id,
plays gene-disease-association:gene,
plays encode:encoding-gene; 

disease sub entity, 
owns disease-name, 
plays gene-disease-association:disease,
plays protein-disease-association:disease;

encode sub relation,
relates encoded-protein,
relates encoding-gene;

protein-disease-association sub relation,
relates protein,
relates disease;

gene-disease-association sub relation,
relates gene,
relates disease; 

uniprot-id sub attribute, value string;
entrez-id sub attribute, value string;
disease-name sub attribute, value string;

关于一个完整的工作实例,可以在Github上找到一个开源的生物医学知识图。这是从各种著名的生物医学资源加载数据,如Uniprot、Disgenet、Reactome和其他。

有了存储在TypeDB中的数据,你可以运行查询,问一些问题,如:哪些药物会与SARS病毒有关的基因相互作用?

为了回答这个问题,我们可以使用TypeQL中的以下查询。

match 
$virus isa virus, has virus-name "SARS"; 
$gene isa gene; 
$drug isa drug; 
($virus, $gene) isa gene-virus-association; 
($gene, $drug) isa drug-gene-interaction;

运行这个将使TypeDB返回符合查询条件的数据。并可以在TypeDB Studio中可视化,如下所示,这将有助于了解哪些相关药物可能值得进一步调查。

通过自动推理,TypeDB也可以推断出数据库中不存在的知识。这是通过编写规则来完成的,这些规则构成了TypeDB中模式的一部分。例如,一个规则可以推断出一个基因和一种疾病之间的关联,如果该基因编码的蛋白质与该疾病有关。这样的规则将被写成:

rule inference-example:
when {
(encoding-gene: $gene, encoded-protein: $protein) isa encode;
(protein: $protein, disease: $disease) isa protein-disease-association;
} then {
(gene: $gene, disease: $disease) isa gene-disease-association;
};

然后,如果我们要插入以下数据:

TypeDB将能够推断出基因和疾病之间的联系,即使没有插入到数据库中。在这种情况下,以下关系基因-疾病-关联将被推断出来。

match
$gene isa gene, has gene-id "2";
$disease isa disease, has disease-name $dn; ;
(gene: $gene, disease:$disease) isa gene-disease-assocation;

通过机器学习加速目标探索

有了TypeDB对生物医学数据(符号)进行表示,再加上机器学习的上下文知识就可以让整个系统变得更加强大,从而增强洞察力。例如,可以通过药物探索管道发现有希望的目标。

寻找有希望的目标的方法是使用链接预测算法。TypeDB的规则引擎允许这样的ML模型执行,该模型通过推理推断对事实进行学习。这意味着从对平面的、无背景的数据学习转向对推理的、有背景的知识学习。其中一个好处是,根据领域的逻辑规则,预测可以被概括到训练数据的范围之外,并减少所需的训练数据量。

这样一个药物发现的工作流程如下:

1. 查询TypeDB,创建上下文知识的子图,利用TypeDB的全部表达能力。

2. 将子图转化为嵌入(embedding),并将这些嵌入到图学习算法中。

3. 预测结果(例如,作为基因-疾病关联之间的概率分数)可以被插入TypeDB,并用于验证/优先考虑某些目标。

有了数据库中的这些预测,我们可以提出更高层次的问题,利用这些预测与数据库中更广泛的背景知识。比如说:什么是最有可能成为黑色素瘤的基因目标,这些基因编码的蛋白质在黑色素细胞中如何表达?

用TypeQL写,这个问题看起来如下:

match 
$gene isa gene, has gene-id $gene-id;
$protein isa protein; 
$cell isa cell, has cell-type "melanocytes";
$disease isa disease, has disease-name "melanoma";
($gene, $protein) isa encode; 
($protein, $cell) isa expression; 
($gene, $disease) isa gene-disease-association, has prob $p; 
get $gene-id; sort desc $p;

这个查询的结果将是一个按概率分数排序的基因列表(如图学习者预测的):

{$gid "TOPGENE" isa gene-id;}
{$gid "BESTGENE" isa gene-id;}
{$gid "OTHERTARGET" isa gene-id;}
...

然后,我们可以进一步研究这些基因,例如通过了解每个基因的生物学背景。比方说,我们想知道TOPGENE基因编码的蛋白质所处的组织。我们可以写下面的查询。

match 
$gene isa gene, has gene-id $gene-id; $gene-id "TOPGENE"; 
$protein isa protein;
$tissue isa tissue, has name $name;
$rel1 ($gene, $protein);
$rel2 ($protein, $tissue);

在TypeDB Studio中可视化的结果,可以显示这个基因编码的蛋白质在结肠、心脏和肝脏中的表达:

医药探索中的人工智能

结论

世界迫切需要创造治疗破坏性疾病的解决方案,希望通过人工智能的创新建立一个更健康的世界,在这个世界中每种疾病都可以被治疗。人工智能作用于药物探索仍处于起步阶段,但是如果一旦实现将会让生物学释放出新的创新浪潮,并使21世纪真正成为属于它的纪元。

在这篇文章中,我们看了TypeDB是如何实现生物医学知识的符号化表示,以及如何改善ML来为药物探索做出贡献的。在药物探索中应用人工智能的科学家们使用TypeDB来分析疾病网络,更好地理解生物医学研究的复杂性,并发现新的和突破性的治疗方式。

译者介绍

崔皓,51CTO社区编辑,资深架构师,拥有18年的软件开发和架构经验,10年分布式架构经验。

原文标题:Artificial Intelligence in Drug Discovery,作者:Tomás Sabat

本篇关于《医药探索中的人工智能》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于科技周边的相关知识,请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
报告称 ChatGPT 等生成式 AI 导致网络钓鱼邮件攻击增长 135%报告称 ChatGPT 等生成式 AI 导致网络钓鱼邮件攻击增长 135%
上一篇
报告称 ChatGPT 等生成式 AI 导致网络钓鱼邮件攻击增长 135%
适用于 Windows 2303 的 PL11 驱动程序:如何下载和安装
下一篇
适用于 Windows 2303 的 PL11 驱动程序:如何下载和安装
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO标题魔匠AI:高质量学术写作平台,毕业论文生成与优化专家
    魔匠AI
    SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
    10次使用
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    26次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    25次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    34次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    36次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码