当前位置:首页 > 文章列表 > 文章 > python教程 > Pandas提取字符串数值并分组统计

Pandas提取字符串数值并分组统计

2025-09-26 17:36:33 0浏览 收藏

本文详细介绍了如何利用Pandas库清洗包含混合文本和数字的字符串列,提取数值并进行分组聚合。通过`str.extract`结合正则表达式,文章演示了如何从诸如"1 table"、"3chairs"等格式不规范的字符串中提取纯数字,并将其转换为数值类型,为后续计算做准备。重点讲解了如何使用提取出的数值,基于`Category`列进行分组求和,以及如何结合`Series.where()`方法进行条件性聚合,例如只计算已支付的销售量。掌握这些技巧,能有效解决数据分析中常见的字符串数据清洗难题,提升数据预处理效率,为更深入的数据分析奠定基础。文章还总结了正则表达式的注意事项,类型转换以及错误处理等,让读者可以避免犯错。

Pandas数据清洗:从混合字符串列中提取数值并进行分组聚合

本教程详细介绍了如何在Pandas DataFrame中处理包含混合文本和数字的字符串列。通过使用str.extract结合正则表达式,可以高效地从字符串中提取数值,并将其转换为适当的数字类型。文章进一步演示了如何利用这些提取出的数值进行分组聚合,包括基础的总和计算以及基于其他列的条件性聚合,从而解决数据清洗和分析中的常见挑战。

在数据分析实践中,我们经常会遇到数据格式不规范的情况,例如在同一个字符串列中混合了数字和文本。当我们需要对这些数字进行计算(如求和、平均值)时,就必须先将它们精确地提取出来。Pandas库提供了强大的字符串处理功能,特别是Series.str.extract方法,能够结合正则表达式高效地解决这类问题。

场景描述

假设我们有一个Pandas DataFrame,其中包含产品类别(Category)、销售量(Sales)和支付状态(Paid)等信息。Sales列的数据格式不一致,例如"1 table"、"3chairs"、"8 cushions"等,数字与文本紧密相连,且文本部分也不固定。我们的目标是从Sales列中提取出纯粹的销售数字,并根据Category列进行分组求和。

首先,我们来创建示例数据:

import pandas as pd
import io

data = """Category    Sales       Paid
Table       1 table     Yes
Chair       3chairs     Yes
Cushion     8 cushions  Yes
Table       3Tables     Yes
Chair       12 Chairs   No
Mats        12Mats      Yes
"""

df = pd.read_csv(io.StringIO(data), sep=r'\s{2,}', engine='python')
print("原始DataFrame:")
print(df)

输出:

原始DataFrame:
  Category       Sales Paid
0    Table     1 table  Yes
1    Chair     3chairs  Yes
2  Cushion  8 cushions  Yes
3    Table     3Tables  Yes
4    Chair    12 Chairs   No
5     Mats       12Mats  Yes

使用str.extract提取数值

解决此问题的核心是使用str.extract方法,它允许我们通过正则表达式从字符串中捕获特定模式的数据。

1. 定义正则表达式

我们需要一个正则表达式来匹配字符串开头的数字。

  • ^:匹配字符串的开始。
  • \d+:匹配一个或多个数字(0-9)。
  • ():捕获组,表示我们想要提取这部分匹配到的内容。

因此,正则表达式为^(\d+)。

2. 应用str.extract并转换类型

将正则表达式应用于Sales列,并指定expand=False以返回一个Series而不是DataFrame(因为我们只有一个捕获组)。提取出的结果将是字符串类型,需要通过astype(int)将其转换为整数类型,以便进行数学运算。

# 提取Sales列中的数字并转换为整数
extracted_sales = df['Sales'].str.extract('^(\d+)', expand=False).astype(int)
print("\n提取并转换后的销售数字:")
print(extracted_sales)

输出:

提取并转换后的销售数字:
0     1
1     3
2     8
3     3
4    12
5    12
Name: Sales, dtype: int64

分组聚合:计算各类别的总销售量

现在我们已经得到了纯粹的销售数字,可以将其与原始DataFrame的Category列结合,进行分组求和。

# 计算所有项目的销售总量
total_sales_per_category = extracted_sales.groupby(df['Category']).sum()
print("\n按类别统计的总销售量:")
print(total_sales_per_category)

输出:

按类别统计的总销售量:
Category
Chair      15
Cushion     8
Mats       12
Table       4
Name: Sales, dtype: int64

进阶应用:条件性分组聚合

有时,我们可能需要基于另一个列的条件来计算销售量,例如只计算已支付(Paid == 'Yes')的销售量。这时,我们可以先对Sales列进行条件筛选,然后再进行提取和聚合。

一种有效的做法是使用Series.where()方法。where()方法根据条件选择性地替换Series中的值。如果条件为True,则保留原始值;如果条件为False,则替换为other参数指定的值。在这里,我们希望对于Paid不为'Yes'的行,其销售量计为0。

# 只计算已支付(Paid == 'Yes')项目的销售总量
conditional_sales = (
    df['Sales']
    .where(df['Paid'] == 'Yes', other='0') # 如果Paid不是'Yes',则将Sales值替换为'0'
    .str.extract('^(\d+)', expand=False)
    .astype(int)
    .groupby(df['Category'])
    .sum()
)
print("\n按类别统计的已支付销售量:")
print(conditional_sales)

输出:

按类别统计的已支付销售量:
Category
Chair       3
Cushion     8
Mats       12
Table       4
Name: Sales', dtype: int64

在这个例子中,Chair类别的总销售量是15,但只有一条记录是Paid == 'Yes'(3chairs),另一条(12 Chairs)是Paid == 'No'。因此,条件性聚合后,Chair的已支付销售量变为3。

注意事项与总结

  • 正则表达式的准确性:选择正确的正则表达式至关重要。本例中^(\d+)适用于数字在字符串开头的情况。如果数字在字符串中间或末尾,或者有其他更复杂的模式,则需要调整正则表达式。例如,(\d+)可以匹配字符串中任意位置的数字。
  • expand参数:当正则表达式包含捕获组时,str.extract默认返回一个DataFrame。如果只有一个捕获组且希望结果为Series,设置expand=False会更方便。
  • 类型转换:str.extract提取出的内容总是字符串类型。在进行数值计算前,务必使用astype(int)、astype(float)等方法将其转换为合适的数值类型。
  • 错误处理:如果str.extract未能匹配到任何数字,它会返回NaN。尝试将NaN转换为整数会引发错误。在实际应用中,可能需要先用fillna(0)或其他策略处理NaN值,或使用pd.to_numeric(errors='coerce')来更稳健地处理转换失败的情况。
  • where()的妙用:Series.where()是一个非常强大的工具,可以在不改变DataFrame结构的前提下,根据条件灵活地修改Series中的值,为后续操作(如本例中的条件性聚合)奠定基础。

通过本教程,我们学习了如何利用Pandas的str.extract方法结合正则表达式,有效地从混合字符串列中提取数值,并进行灵活的分组聚合。掌握这些技巧,将大大提升您在数据清洗和预处理方面的效率和能力。

文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《Pandas提取字符串数值并分组统计》文章吧,也可关注golang学习网公众号了解相关技术文章。

双系统开机无引导?EasyBCD修复教程双系统开机无引导?EasyBCD修复教程
上一篇
双系统开机无引导?EasyBCD修复教程
Win8如何查看本机IP地址
下一篇
Win8如何查看本机IP地址
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3178次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3389次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3418次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4523次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3797次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码