将特征转换为正态分布的一种方法示例
从现在开始,努力学习吧!本文《将特征转换为正态分布的一种方法示例》主要讲解了等等相关知识点,我会在golang学习网中持续更新相关的系列文章,欢迎大家关注并积极留言建议。下面就先一起来看一下本篇正文内容吧,希望能帮到你!
正态(高斯)分布在机器学习中起着核心作用,线性回归模型中要假设随机误差等方差并且服从正态分布,如果变量服从正态分布,那么更容易建立理论结果。
统计学领域的很大一部分研究都是假设数据是正态分布的,所以如果我们的数据具有是正态分布,那么么则可以获得更好的结果。但是一般情况下我们的数据都并不是正态分布,所以 如果我们能将这些数据转换成正态分布那么对我们建立模型来说是一件非常有帮助的事情。
standard_normal = np.random.normal(0, 1, size=1_000_000)
fontdict = {'family':'serif', 'color':'darkgreen', 'size':16}
fig, axs = plt.subplots(1, 1, figsize=(8, 8))
axs.hist(standard_normal, bins=1000, density=True, fc=(0,0,1,0.4))
axs.set_title('Standard Normal Distribution', fontdict=fontdict, fontweight='bold', pad=12)
axs.set_xlabel('X', fontdict=fontdict, fontweight='normal', labelpad=12)
axs.set_ylabel('Density', fontdict=fontdict, fontweight='normal', labelpad=12)
axs.grid()
如果你正在处理一个密度(大约)呈线性下降的特性(见下图)。
x = np.linspace(0, 1, 1001)
sample = (3 - np.sqrt(9 - 8 * np.random.uniform(0, 1, 1_000_000))) / 2fontdict = {'family':'serif', 'color':'darkgreen', 'size':16}
fig, axs = plt.subplots(1, 1, figsize=(8, 8))
axs.hist(sample, bins=1000, density=True, fc=(0,0,1,0.4))
axs.scatter(x, np.full_like(x, 0.01), c=x, cmap=cmap)
axs.set_title('Original Feature Distribution', fontdict=fontdict, fontweight='bold', pad=12)
axs.set_xlabel('X', fontdict=fontdict, fontweight='normal', labelpad=12)
axs.set_ylabel('Density', fontdict=fontdict, fontweight='normal', labelpad=12)
axs.grid()
要将这个特征转换为具有钟形分布的变量,可能没有那么简单,我如果我使用某种变换将密度最高的左端放到中心,那么中心两侧的其余点怎么办?
如果变换是将点从中间和右边的[0,1]移到均值的任意一边(N(0,1) =0)那么本质上是一个非单调的变换,这不是很好因为那样的话,变换后的特征值就没有什么意义了。虽然我们能够得到一个钟形分布,但是对转换后的值没有意义,排序也不再被保留(见下图3中转换后的特征值的散点图)。
log_transform = lambda ar: np.multiply(1.6 * np.log10(ar+1e-8), np.random.choice((-1, 1), size=ar.size)
fontdict = {'family':'serif', 'color':'darkgreen', 'size':16}
fig, axs = plt.subplots(1, 1, figsize=(8, 8))
axs.hist(standard_normal, bins=1_000, density=True, fc=(0,0,1,0.4), label='Standard Normal')
axs.hist(log_transform(sample), bins=1_000, density=True, fc=(1,0,0,0.4), label='Log Transform')
axs.scatter(log_transform(x), np.full_like(x, 3e-3), c=x, cmap=cmap)
axs.set_xlim(-5, 5)
axs.set_title('Log Transform', fontdict=fontdict, fontweight='bold', pad=12)
axs.set_xlabel('$pm$1.6log(X)', fontdict=fontdict, fontweight='normal', labelpad=12)*
axs.set_ylabel('Density', fontdict=fontdict, fontweight='normal', labelpad=12)
axs.legend()
axs.grid()
特征的密度是单调递减的。目标是使用范围(-∞,∞)的变换来拉伸和压缩不同点周围的[0,1]范围,并且变换空间中每个点的密度应该是N(0,1)所给出的。所以是不是可以尝试使用其他的方法呢?
先看看原始特征的CDF函数:
如果确保变换函数将原始分布的 (i-1)ᵗʰ 和 iᵗʰ 百分位数之间的点映射到 N( 0,1)那会怎么样呢?
g 是我们正在寻找的变换,Φ 是 N(0,1) 的 CDF。
但是这可能只是最终目标只是这种方法的延伸。 因为我们的方法不应限制在由百分位数定义的区间,而是想要一个函数,它可以满足上面原始CDF公式中的每个区间的要求。于是就得到了下面的公式
如果你对概率论比较熟悉,那么回想一下概率的特征在于它的分布函数(Jean Jacod 和 Philip Protter 的 Probability Essentials 中的定理 7.1)。我将把自己限制在了单调递增函数的空间中。
单调递增函数的约束假设集,如果我能找到一个函数使变换后的特征的CDF等于N(0,1)的CDF,那不就可以了吗。这与上面公式中的单调递增约束一起,得到了下面的公式。
将函数g变换为Φ的逆函数和F的复合函数
下面看看结果,我们使用上面总结的结果来转的特征,使其具有标准正态分布。
fontdict = {'family':'serif', 'color':'darkgreen', 'size':16}
fig, axs = plt.subplots(1, 1, figsize=(8, 8))
axs.hist(standard_normal, bins=1_000, density=True, fc=(0,0,1,0.4), label='Standard Normal')
axs.hist(scipy.stats.norm.ppf(1.5*sample - 0.5*(sample**2)), bins=1000, density=True, fc=(1,0,0,0.4), label='Equation 4 Transform')
axs.scatter(norm.ppf(1.5*x - 0.5*(x**2)), np.full_like(x, 3e-3), c=x, cmap=cmap)
axs.set_xlim(-5, 5)
axs.set_title("Transformed Feature's Density", fontdict=fontdict, fontweight='bold', pad=12)
axs.set_xlabel('$Phi^{-1}(F$(X))', fontdict=fontdict, fontweight='normal', labelpad=12)
axs.set_ylabel('Density', fontdict=fontdict, fontweight='normal', labelpad=12)
axs.legend()
axs.grid()
任何分布(只要它是一个连续分布函数)都可以使用这个方法。但是在使用它之前,还是需要看看用例中使用它是否有意义。
fontdict = {'family':'serif', 'color':'darkgreen', 'size':16}
fig, axs = plt.subplots(1, 1, figsize=(8, 8))
axs.scatter(x, norm.ppf(1.5*x - 0.5*(x**2)), c=x, cmap=cmap)
axs.set_xlim(0, 1)
axs.set_title('Transform', fontdict=fontdict, fontweight='bold', pad=12)
axs.set_xlabel('X', fontdict=fontdict, fontweight='normal', labelpad=12)
axs.set_ylabel('$Phi^{-1}(F$(X))', fontdict=fontdict, fontweight='normal', labelpad=12)
axs.grid()
我们的转函数看起来是这样的,这个过程给出了如图5所示的转换。需要注意的是:这个特征取值接近 0 或接近 1 时输出波动大,但当值接近 0.5 时输出波动小。 如果不是这种情况会给模型提供对特征的错误解释,可能会损害其性能。
以上就是《将特征转换为正态分布的一种方法示例》的详细内容,更多关于机器学习,数据,线性回归的资料请关注golang学习网公众号!
![如何在 Chrome [快速] 中修复 YouTube 卡顿/缓冲问题?](/uploads/20230502/1682982048645044a0afd83.png)
- 上一篇
- 如何在 Chrome [快速] 中修复 YouTube 卡顿/缓冲问题?

- 下一篇
- 马库斯怼马斯克:你还想做全能家用机器人,挺蠢!
-
- 科技周边 · 人工智能 | 9小时前 | 智能辅助驾驶 firefly萤火虫 地平线征程 高端智能电动小车 全球市场
- 地平线与蔚来合作车型firefly萤火虫正式上市
- 245浏览 收藏
-
- 科技周边 · 人工智能 | 10小时前 |
- 即梦ai添加时间戳教程即梦ai日期水印设置攻略
- 369浏览 收藏
-
- 科技周边 · 人工智能 | 10小时前 |
- 小米汽车上险量下降:YU7投产惹的祸
- 499浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- PPTFake答辩PPT生成器
- PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
- 14次使用
-
- Lovart
- SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
- 14次使用
-
- 美图AI抠图
- 美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
- 28次使用
-
- PetGPT
- SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
- 28次使用
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 53次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览