当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 机器学习之模型管理:集成建模

机器学习之模型管理:集成建模

来源:51CTO.COM 2023-04-20 20:13:27 0浏览 收藏

IT行业相对于一般传统行业,发展更新速度更快,一旦停止了学习,很快就会被行业所淘汰。所以我们需要踏踏实实的不断学习,精进自己的技术,尤其是初学者。今天golang学习网给大家整理了《机器学习之模型管理:集成建模》,聊聊,我们一起来看看吧!

​译者 | 崔皓

审校 | 孙淑娟

开篇

机器学习之模型管理:集成建模

机器学习被企业应用到不同的业务场景解决不同的业务问题,随着机器学习的广泛应用也让组织在选择学习方法时不堪重负。 

很多组织在机器学习的应用中使用了高级和经典的学习方法。有大家熟悉的监督学习和无监督学习二分法,还有例如对比学习、强化学习和自我监督学习等机器学习的新兴变体。

此外,还有涉及图形分析、深度神经网络、分割、行为分析和其他技术。当面对大规模复杂业务问题时——例如加强反洗钱措施从而打击金融犯罪——组织如何决定使用哪种机器学习的方法呢?

使用集成建模,让这个问题变得不那么重要了。这种机器学习方法使组织能够利用各种模型并将它们与预测准确性结合起来,从而获得最佳结果。

这种方法帮助金融服务、欺诈检测和网络安全中的高维数据提供完整上下文。使用集成建模的组织表示“集成建模让模型的建立更加多样化“,Resistant AI首席执行官Martin Rehak 承认,“我们并不希望单一模型一枝独秀。”

使用模型的多样性使组织能够用不同的算法来评估业务问题的各个方面,以便采用完全知情的、一致的决策方法——这些方法是可以解释的。

基于共识的模型决策

前面提到的集成建模的原理是毋庸置疑的,数据科学家无需花费大量时间来为业务案例设计完美的模型,只需要将那些不完美的模型组合起来产生预测能力。“当你以集成方法看待机器学习时,你会从小型算法中做出决策,”Rehak 指出。“而且,在我们的案例中,这些算法是针对每笔交易动态组合的,以便做出最佳决策。” 更重要的是,也许这些模型中的每一个都可以专注于某一个垂直领域,例如识别洗钱事件。

例如,一种模型只专注于交易的规模。另一个模型专注于交易的位置。不同的模型可以检查出哪些特定参与者参与了交易。目标是“没有出现任何峰值”的情况,Rehak 解释说。“模型的分布非常平坦,与模型对应的证据页相对较弱。通过结合许多弱证据元素,就能够做出更强有力的决定。” 另一个好处是,通过经典的机器学习和更简单的模型,将模型投入生产所需的训练数据(和注释)减少。这样的模型比需要大量训练数据的深度神经网络更容易解释。 

上下文建模

将 Rehak 所描述的分布平坦的建模方式与其他集成建模技术区分开来是很重要的。最常见的集成建模示例涉及 bagging 或boosting​(后者可能需要 Xtreme Gradient Boosting)。随机森林是一个基于不同决策树组合的提升示例。使用这种方法,“你可以根据集合中的先前版本一个一个地构建集合,”Rehak 评论道。尽管它是一种快速构建具高预测准确性的模型方法,但它存在过度拟合的风险(由于训练数据集太小,导致模型变得不太适用于生产数据)。

Rehak 的集成方法更适合 AML 用例,因为它基于影响这些事件的上下文。“如果您询问洗钱专家交易是否恶意,他们首先是查看账户的历史以及该人过去的行为方式,”雷哈克说。通过他的方法,与地理位置、时间、相关方和金融机构等相关因素,使用单独的机器学习模型进行检查。只有将这些模型的每个结果组合在一起,人工智能系统才能确定是否存在犯罪交易,通过这种做法的误报会明显减少。“通过机器学习可以解释大多数异常值,否则海量的异常值会淹没反洗钱团队,”雷哈克说。

决策边界 

在用例进行集成建模时,使用超过 60 个模型针对分析交易的不同方面进行建模是常见的事情。集成方法的实时结果非常适合这种应用场景。“这 60 种算法中的一种可以将所有内容分割成段,然后对每秒平均事务大小进行建模,”Rehak 透露。“我们可以有数千个片段,这些片段都是同时动态更新的。”

由于将大量模型整合到集合中,每个模型都会评估交易的不同方面从而发现潜在的犯罪行为,除此之外再不能创建更全面的方法了。Rehak 透露:“我们从多个角度看待你,以至于塑造你行为的同时让你避免所有这些犯罪行为变得非常困难。”“因为,为了不被识别出来,“犯罪分子”需要避免的不止一个决策边界,而是大量动态的决策边界。这些算法中的每个模型都是独立学习的,然后我们将它们组合在一起。”

可解释的人工智能 

这些集合如何增强可解释性以及所对应的许多方面。 首先,他们没有过度依赖先进的机器学习,只包含简单、更可解释的算法(涉及传统机器学习)。这些模型成为评估交易犯罪的基石。“当我们说某件事很重要时,我们可以告诉你原因,”雷哈克说。“我们可以告诉你哪些指标表明了这一点。我们可以针对为每个发现写一份报告,指出由于这些因素会造成交易犯罪的高风险。” 尽管每种算法都专注于特征,但并非所有算法在模型中都具有相同的权重。一般而言,涉及图形分析(擅长检查关系)的算法​​比其他模型具有更大的权重。

模型不仅可以解释可疑的行为,也可以告诉你异常值出现的原因。“通常我们在集成中有四到五个占主导地位的算法,也就是说当我相信这是一个异常值时由于有算法的支撑,其他人也会表示同意,”Rehak 指出。“而且,我们有四五个触发因素,这就保证了在某种程度上使结果更偏向于异常。” 由于单个模型仅评估交易中的一个因素,因此它们提供了分数的可解释性和单词的可解释性。“因为我们知道集合,知道微分段,还知道交易量,我们可以很容易地在分数旁边通过问题显示这些信息,而交易量对一家公司的财务部门非常重要,”雷哈克补充道。

集成模式

最终,集成建模的使用效果超过了任何一种应用程序,尽管它对 AML 活动有巨大的帮助。如果应用得当,该技术可以提高可解释性,同时减少解决业务关键问题所需的训练数据和注释数量。

集成建模利用各种数据科学技术来解决多种业务问题,而不是将问题限制在一个或两个。因此,这种集成解决问题的方法可能会成为AI 部署的典型代表。

译者介绍

崔皓,51CTO社区编辑,资深架构师,拥有18年的软件开发和架构经验,10年分布式架构经验。曾任惠普技术专家。乐于分享,撰写了很多热门技术文章,阅读量超过60万。《分布式架构原理与实践》作者。

原文标题:​Machine Learning Model Management: Ensemble Modeling​

文中关于机器学习,数据科学,金融的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《机器学习之模型管理:集成建模》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
如何解决 Windows 11 屏幕上的黄色问题如何解决 Windows 11 屏幕上的黄色问题
上一篇
如何解决 Windows 11 屏幕上的黄色问题
如何修复 Chrome 中的 Twitch 错误数据加载问题
下一篇
如何修复 Chrome 中的 Twitch 错误数据加载问题
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO标题魔匠AI:高质量学术写作平台,毕业论文生成与优化专家
    魔匠AI
    SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
    53次使用
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    54次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    76次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    62次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    71次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码