当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 机器学习加速先进制造技术

机器学习加速先进制造技术

来源:51CTO.COM 2023-05-02 17:47:31 0浏览 收藏

来到golang学习网的大家,相信都是编程学习爱好者,希望在这里学习科技周边相关编程知识。下面本篇文章就来带大家聊聊《机器学习加速先进制造技术》,介绍一下,希望对大家的知识积累有所帮助,助力实战开发!

​尽管如今的生活中充满了惊人的技术进步,但支撑这些发展的金属的使用方式在数千年里都没有显著改变。从为汽车和卡车提供形状、强度和燃油经济性的金属棒、金属管和立方体,到为从电厂到海底电缆的所有东西输送电能的电线,一切都是如此。

机器学习加速先进制造技术

但是情况正在迅速变化:材料制造业正在使用全新创新技术、过程和方法来改进现有的产品和创造新的产品。美国太平洋西北国家实验室(PNNL)是这一领域的领导者,被称为先进制造。PNNL成立于1965年,利用其在化学、地球科学、生物学和数据科学方面的独特优势,促进科学知识,应对可持续能源和国家安全方面的挑战。

在PNNL的“科学中的人工智能推理”项目中工作的科学家们,利用人工智能的分支机器学习开创了设计和训练计算机软件的方法,以指导新的制造工艺的开发。

这些软件程序经过训练,可以识别制造数据中的模式,并使用这种模式识别能力来推荐或预测制造过程中的设置,这些设置将产生性能改善的材料,比使用传统方法生产的材料更轻、更强或更导电。

PNNL的材料科学家Keerti Kappagantula说:“我们用先进的制造工艺制造的组件对工业企业非常有吸引力,他们希望看到这些技术尽快推出。”

一个挑战是,在先进制造技术的基础物理和其他复杂性得到充分充实和验证之前,行业合作伙伴不愿投资于新技术。

为了弥补差距,Kappagantula与PNNL的数据科学家Henry Kvinge和Tegan Emerson合作开发机器学习工具,预测制造过程中的各种设置如何影响材料性能。这些工具还以可视化的方式展示了预测,为行业合作伙伴和其他人提供了即时的清晰和理解。

通过使用这些机器学习工具,该团队相信从实验室到工厂的时间可以缩短到几个月,而不是几年。在工具预测的指导下,材料科学家只需要进行少量的实验,而不是几十个,就可以确定未来材料特性。例如,什么设置可以导致铝管达到预期性能。

Kvinge说:“我们的目标是将机器学习作为一种工具,帮助指导正在运行先进制造过程的人在他们的设备上尝试不同的设置——不同的工艺参数——以找到一个让他们实现他们实际想要实现的目标。”

解决正确的问题

在传统的制造中,计算机模型建立在对制造过程的物理学非常了解的基础上,展示了不同的设置如何影响材料的性能。Kappagantula说,在先进的制造业中,人们对物理学知之甚少。如果没有这种专业理解,生产就会推迟。

新的先进制造人工智能工具项目旨在确定如何利用机器学习来提取工艺参数和产生的材料属性之间的模式,这为先进制造技术的底层物理提供了洞察,并可以加速它们的部署。

“我们采取的方法,统一的主题,从理解材料科学家如何运用他们专业知识以及他们有什么心智模式?然后用它作为构建模型的框架。”Kvinge说。

在这个项目中需要一个机器学习模型,在给定特定参数的情况下预测材料的性能。在与材料科学家的磋商中,他很快了解到,他们真正想要的是能够指定一种特性,并有一个模型建议所有可用于实现该特性的工艺参数。

一个可说明的解决方案

Kappagantula和她的同事需要的是一个机器学习框架,它可以提供结果,帮助她的团队做出下一步尝试什么实验的决定。在缺乏这种指导的情况下,调整参数以开发具有所需性能的材料的过程是充满失败风险。

在这个项目中,Kvinge和他的同事们首先开发了一个名为“差别属性分类”的机器学习模型,该模型利用机器学习的模式匹配能力来区分两组工艺参数,以确定哪一组更有可能产生具有所需属性的材料。

该模型允许材料科学家在开始实验之前锁定最佳参数,这可能会花费昂贵,需要大量的准备工作。

Kappagantula说,在进行机器学习模型推荐的实验之前,她需要相信模型的推荐。“我希望能够看到它是如何进行分析的。”

这个概念在机器学习领域被称为可解释性,对不同领域的专家有不同的含义。Kvinge指出,对于数据科学家来说,对机器学习模型如何得出预测的解释可能与对材料科学家有意义的解释完全不同。

当Kvinge、Emerson和他们的同事在处理这个问题时,他们试图从材料科学家的思维框架来理解它。

Kvinge说:“事实证明,他们通过这些材料微观结构的图片非常了解这一点。”“如果你问他们哪里出了问题,为什么实验不顺利,或者为什么进行得很顺利,他们会看着图片,向你指出问题,说这些颗粒尺寸太大了,或太小了,或诸如此类的问题。”

为了使他们的机器学习模型的结果具有可解释性,Kvinge、Emerson和同事们使用了先前实验中的微结构图像和相关数据来训练一个模型,该模型生成微结构图像,这些图像将由一组给定的参数调整的制造过程产生。

该团队目前正在验证该模型,并致力于使其成为软件框架的一部分,材料科学家可以使用该框架来确定进行哪些实验,同时开发承诺改变材料生产和性能的先进制造技术。

Kappagantula在谈到先进制造业时表示:“这不仅仅是在提高能源效率,它还开启了新材料从未见过的特性和性能。”​

今天关于《机器学习加速先进制造技术》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于人工智能,机器学习,金融的内容请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
在 Windows 11 中出现运行时错误?立即修复在 Windows 11 中出现运行时错误?立即修复
上一篇
在 Windows 11 中出现运行时错误?立即修复
如何使用 HomePod 和 HomePod Mini 上的温度和湿度传感器
下一篇
如何使用 HomePod 和 HomePod Mini 上的温度和湿度传感器
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    14次使用
  • MeowTalk喵说:AI猫咪语言翻译,增进人猫情感交流
    MeowTalk喵说
    MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
    14次使用
  • SEO标题Traini:全球首创宠物AI技术,提升宠物健康与行为解读
    Traini
    SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
    17次使用
  • 可图AI 2.0:快手旗下新一代图像生成大模型,专业创作者与普通用户的多模态创作引擎
    可图AI 2.0图片生成
    可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
    19次使用
  • 毕业宝AIGC检测:AI生成内容检测工具,助力学术诚信
    毕业宝AIGC检测
    毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
    32次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码