Pandas筛选数据方法详解
想知道**Pandas DataFrame如何筛选数据**吗?本文深入讲解了Pandas中基于**布尔索引**的多条件筛选技巧。通过“&”(AND)和“|”(OR)运算符,你可以灵活组合多个筛选条件,例如筛选出年龄大于25岁且居住在New York的用户:`(df['Age'] > 25) & (df['City'] == 'New York')`。文章还提供了详细的代码示例,展示了如何利用布尔索引进行单条件、多条件筛选,以及如何结合`loc`方法更清晰地筛选数据和选择特定列。掌握这些技巧,让你在数据分析中轻松“捞”出所需信息,提升数据处理效率。
Pandas通过布尔索引实现多条件筛选,使用“&”(AND)、“|”(OR)组合多个条件,如(df['Age'] > 25) & (df['City'] == 'New York'),需注意括号优先级。

在Pandas中,要筛选DataFrame的数据,核心思想就是布尔索引(Boolean Indexing)。简单来说,就是你给DataFrame一个True/False的序列,Pandas会根据这个序列,只保留那些对应位置为True的行。这方法灵活得很,能让你根据各种条件,无论是数值、文本还是时间,精准地把你需要的数据“捞”出来。
说实话,第一次接触DataFrame筛选的时候,我个人觉得它有点像是在玩一个高级的“找不同”游戏。你设定好规则,然后Pandas就帮你把符合规则的数据找出来。最基础的筛选,就是直接把你的条件表达式写在DataFrame的方括号里。
假设我们有一个叫 df 的DataFrame,里面有 Name, Age, City, Score 这些列。
import pandas as pd
import numpy as np
# 示例数据
data = {
'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', 'Grace', 'Heidi', 'Ivan', 'Judy'],
'Age': [24, 27, 22, 32, 29, 35, 26, 30, 23, 28],
'City': ['New York', 'London', 'Paris', 'New York', 'London', 'Paris', 'New York', 'London', 'Paris', 'New York'],
'Score': [85, 92, 78, 95, 88, 70, 91, 83, 75, 90],
'Enrollment_Date': pd.to_datetime(['2020-01-15', '2019-03-22', '2021-07-01', '2018-11-10', '2020-05-01', '2017-09-01', '2021-02-28', '2019-10-05', '2022-04-12', '2020-08-18']),
'Is_Active': [True, False, True, True, False, True, True, False, True, True],
'Comments': ['Good', 'Average', np.nan, 'Excellent', 'Needs Improvement', 'Good', 'Excellent', 'Average', 'Good', 'Excellent']
}
df = pd.DataFrame(data)
print(df) # 原始DataFrame
# 1. 单条件筛选:筛选出年龄大于25岁的人
# 核心就是生成一个布尔序列,然后用它来索引DataFrame
filtered_age = df[df['Age'] > 25]
print("\n年龄大于25岁的数据:")
print(filtered_age)
# 2. 筛选特定城市的人
filtered_city = df[df['City'] == 'New York']
print("\n城市是New York的数据:")
print(filtered_city)
# 3. 筛选布尔列
filtered_active = df[df['Is_Active']] # 或者 df[df['Is_Active'] == True]
print("\n活跃用户数据:")
print(filtered_active)
# 4. 结合loc进行筛选:这种方式更明确,也更推荐
# loc的第一个参数是行选择器,第二个是列选择器
filtered_loc = df.loc[df['Score'] > 80, ['Name', 'City', 'Score']]
print("\n分数大于80,并只显示姓名、城市和分数:")
print(filtered_loc)这基本上就是Pandas筛选的起点。你会发现,所有的复杂筛选,最终都归结于如何构造那个布尔序列。掌握了这个,你几乎就能应对所有数据筛选的场景了。
Pandas DataFrame如何实现多条件筛选,以及AND和OR的运用?
在实际的数据分析中,我们很少会只根据一个条件来筛选数据。通常,我们需要同时满足几个条件,或者满足其中之一
好了,本文到此结束,带大家了解了《Pandas筛选数据方法详解》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!
山姆App通知设置教程与开启方法
- 上一篇
- 山姆App通知设置教程与开启方法
- 下一篇
- 阳光电源联手钉钉,打造新能源数字化标杆
-
- 文章 · python教程 | 2小时前 |
- Python语言入门与基础解析
- 296浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- PyMongo导入CSV:类型转换技巧详解
- 351浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python列表优势与实用技巧
- 157浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Pandas修改首行数据技巧分享
- 485浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Python列表创建技巧全解析
- 283浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Python计算文件实际占用空间技巧
- 349浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- OpenCV中OCR技术应用详解
- 204浏览 收藏
-
- 文章 · python教程 | 7小时前 |
- Pandas读取Django表格:协议关键作用
- 401浏览 收藏
-
- 文章 · python教程 | 7小时前 | 身份验证 断点续传 requests库 PythonAPI下载 urllib库
- Python调用API下载文件方法
- 227浏览 收藏
-
- 文章 · python教程 | 7小时前 |
- Windows7安装RtMidi失败解决办法
- 400浏览 收藏
-
- 文章 · python教程 | 7小时前 |
- Python异步任务优化技巧分享
- 327浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3180次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3391次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3420次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4526次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3800次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

